substantia nigra reticulata
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 2)

H-INDEX

22
(FIVE YEARS 1)

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Amanda M Willard ◽  
Brian R Isett ◽  
Timothy C Whalen ◽  
Kevin J Mastro ◽  
Chris S Ki ◽  
...  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder whose cardinal motor symptoms are attributed to dysfunction of basal ganglia circuits under conditions of low dopamine. Despite well-established physiological criteria to define basal ganglia dysfunction, correlations between individual parameters and motor symptoms are often weak, challenging their predictive validity and causal contributions to behavior. One limitation is that basal ganglia pathophysiology is studied only at end-stages of depletion, leaving an impoverished understanding of when deficits emerge and how they evolve over the course of depletion. In this study, we use toxin- and neurodegeneration-induced mouse models of dopamine depletion to establish the physiological trajectory by which the substantia nigra reticulata (SNr) transitions from the healthy to the diseased state. We find that physiological progression in the SNr proceeds in discrete state transitions that are highly stereotyped across models and correlate well with the prodromal and symptomatic stages of behavior.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Arnaud L Lalive ◽  
Anthony D Lien ◽  
Thomas K Roseberry ◽  
Christopher H Donahue ◽  
Anatol C Kreitzer

Reinforcement has long been thought to require striatal synaptic plasticity. Indeed, direct striatal manipulations such as self-stimulation of direct-pathway projection neurons (dMSNs) are sufficient to induce reinforcement within minutes. However, it’s unclear what role, if any, is played by downstream circuitry. Here, we used dMSN self-stimulation in mice as a model for striatum-driven reinforcement and mapped the underlying circuitry across multiple basal ganglia nuclei and output targets. We found that mimicking the effects of dMSN activation on downstream circuitry, through optogenetic suppression of basal ganglia output nucleus substantia nigra reticulata (SNr) or activation of SNr targets in the brainstem or thalamus, was also sufficient to drive rapid reinforcement. Remarkably, silencing motor thalamus—but not other selected targets of SNr—was the only manipulation that reduced dMSN-driven reinforcement. Together, these results point to an unexpected role for basal ganglia output to motor thalamus in striatum-driven reinforcement.


Neuroscience ◽  
2014 ◽  
Vol 256 ◽  
pp. 292-301 ◽  
Author(s):  
S. Recillas-Morales ◽  
L. Sánchez-Vega ◽  
N. Ochoa-Sánchez ◽  
I. Caballero-Florán ◽  
F. Paz-Bermúdez ◽  
...  

2012 ◽  
Vol 512 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Alexander Murphy-Nakhnikian ◽  
Jenelle L. Dorner ◽  
Benjamin I. Fischer ◽  
Nathan D. Bower-Bir ◽  
George V. Rebec

Sign in / Sign up

Export Citation Format

Share Document