magma recharge
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 2)

Geology ◽  
2022 ◽  
Author(s):  
Martin F. Mangler ◽  
Chiara Maria Petrone ◽  
Julie Prytulak

Diffusion chronometry has produced petrological evidence that magma recharge in mafic to intermediate systems can trigger volcanic eruptions within weeks to months. However, less is known about longer-term recharge frequencies and durations priming magma reservoirs for eruptions. We use Fe-Mg diffusion modeling in orthopyroxene to show that the duration, frequency, and timing of pre-eruptive recharge at Popocatépetl volcano (Mexico) vary systematically with eruption style and magnitude. Effusive eruptions are preceded by 9–13 yr of increased recharge activity, compared to 15–100 yr for explosive eruptions. Explosive eruptions also record a higher number of individual recharge episodes priming the plumbing system. The largest explosive eruptions are further distinguished by an ~1 yr recharge hiatus directly prior to eruption. Our results offer valuable context for the interpretation of ongoing activity at Popocatépetl, and seeking similar correlations at other arc volcanoes may advance eruption forecasting by including constraints on potential eruption size and style.


2021 ◽  
Author(s):  
Martin Mangler ◽  
et al.

Items S1 (full time scale datasets), (S2) diffusion model details, and S3 (priming durations for eruptions with published time-scale data).<br>


2021 ◽  
Author(s):  
Martin Mangler ◽  
et al.

Items S1 (full time scale datasets), (S2) diffusion model details, and S3 (priming durations for eruptions with published time-scale data).<br>


2021 ◽  
Vol 9 ◽  
Author(s):  
Katie Males ◽  
Jo Gottsmann

Magma reservoir recharge is widely recognised as a precursor of eruptive activity. However, the causative relationships between reservoir rejuvenation and surface observables such as gravitational potential field changes and ground deformation are still poorly understood. At intermediate and silicic intra-plate volcanoes where crustal mechanical heterogeneity combined with high-prominence are expected to fundamentally affect the crustal stress and strain relationship, protracted period of repose and absence of monitoring data raise questions about the detectability of magma recharge. Here we report results from integrated geodetic forward modelling of ground displacements and gravity changes from reservoir recharge at Erciyes Dağ, a large prominence (∼2,800 m), yet poorly studied, stratovolcano of the Central Anatolian Volcanic Province in Turkey. The most recent eruption at ∼7000 BC, close proximity to the Kayseri Metropolitan Area and absence of dedicated volcano monitoring set a precedent to explore stealth magmatic processes at the volcano. Using finite element analysis we systematically explore the influence of subsurface mechanical heterogeneities and topography on surface deformation and gravity changes from magmatic recharge of Erciyes Dağ’s reservoir. We show that whilst crustal heterogeneity amplifies ground displacements and gravity variations, the volcano’s substantial prominence has the opposite effect. For generic reservoir pressure and density changes of 10 MPa and 10 kg m−3 predicted vertical displacements vary by a factor of 5 while residual gravity changes vary by a factor of 12 between models ignoring topography or mechanical heterogeneity and those that do not. We deduce reservoir volume and mass changes of order 10–3 km3 and 1010 kg, respectively, at the detectability limit of conventional surveying techniques at the volcano. Though dependent on model assumptions, all results indicate that magma recharge at Erciyes Dağ may go undetected at fluxes 1) sufficient to maintain an active reservoir containing eruptable magma and 2) similar to those reported for intermediate/silicic volcanoes with repose times of 100–1,000s of years (e.g., Parinacota) and persistently active mafic volcanoes such as Mt. Etna and Stromboli. Our findings may be utilised to inform integrated geodetic and gravimetric monitoring at Erciyes Dağ and other large prominence silicic volcanoes and could provide early insights into reservoir rejuvenation with implications for the development of disaster risk reduction initiatives.


2021 ◽  
Vol 571 ◽  
pp. 117104
Author(s):  
Bjarne Friedrichs ◽  
Axel K. Schmitt ◽  
Oscar M. Lovera ◽  
Gokhan Atıcı

2021 ◽  
Author(s):  
Kang Cao ◽  
Zhi-Ming Yang ◽  
Noel C. White ◽  
Zeng-Qian Hou

Abstract The giant Pulang porphyry Cu-Au district (446.8 Mt at 0.52% Cu and 0.18 g/t Au) is located in the Yidun arc, eastern Tibet. The district is hosted in an intrusive complex comprising, in order of emplacement, premineralization fine-grained quartz diorite and coarse-grained quartz diorite, intermineralization quartz monzonite, and late-mineralization diorite porphyry, which were all emplaced at ca. 216 ± 2 Ma. Mafic magmatic enclaves are found in both the coarse-grained quartz diorite and quartz monzonite. The well-preserved primary mineral crystals in such a systematic magma series (including contemporaneous relatively mafic intrusions) with well-defined timing provide an excellent opportunity to investigate upper crustal magma reservoir processes, particularly to test the role of mafic magma recharge in porphyry Cu formation. Two groups of amphibole crystals, with different aluminum contents, are observed in these four rocks. Low-Al amphibole crystals (Аl2О3 = 6.2–7.6 wt %) with crystallization temperatures of ~780°C mainly occur in the coarse-grained quartz diorite and quartz monzonite, whereas high-Al amphibole crystals (Al2O3 = 8.0–13.3 wt %) with crystallization temperatures of ~900°C mainly occur in the fine-grained quartz diorite and diorite porphyry. These characteristics, together with detailed petrographic observations and mineral chemistry studies, indicate that the coarse-grained quartz diorite and quartz monzonite probably formed by crystal fractionation in the same felsic magma reservoir, whereas the fine-grained quartz diorite and diorite porphyry formed from relatively mafic magmas sourced from different magma reservoirs. The occurrence of mafic magmatic enclaves, disequilibrium phenocryst textures, and cumulate clots indicates that the coarse-grained quartz diorite and quartz monzonite evolved in an open crustal magma storage system through a combination of crystal fractionation and repeated mafic magma recharge. Mixing with incoming batches of hotter mafic magma is indicated by the appearance of abundant microtextures, such as reverse zoning (Na andesine core with Ca-rich andesine or labradorite rim overgrowth), sharp zoning (Ca-rich andesine or labradorite core with abrupt rimward anorthite decrease) and patchy core (Ca-rich andesine or labradorite and Na andesine patches) textured plagioclase, zoned amphibole, high-Al amphibole clots, skeletal biotite, and quartz ocelli (mantled quartz xenocrysts). Using available partitioning models for apatite crystals from the coarse-grained quartz diorite, quartz monzonite, and diorite porphyry, we estimated absolute magmatic S contents to be 20–100, 25–130, and &gt;650 ppm, respectively. Estimates of absolute magmatic Cl contents for these three rocks are 1,000 ± 600, 1,800 ± 1,100, and 1,300 ± 1,000 ppm, respectively. The slight increase in both magmatic S and Cl contents from the premineralization coarse-grained quartz diorite magma to intermineralization quartz monzonite magma was probably due to repeated recharge of the relatively mafic diorite porphyry magma with higher S but similar Cl contents. Mass balance constraints on Cu, S, and Cl were used to estimate the minimum volume of magma required to form the Pulang porphyry Cu-Au deposit. Magma volume calculated using Cu mass balance constraints implies that a minimum of 21–36 km3 (median of 27 km3) of magma was required to provide the total of 2.3 Mt of Cu at Pulang. This magma volume can explain the Cl endowment of the deposit but is unlikely to supply the sulfur required. Recharge of 5–11 km3 of diorite porphyry magma to the felsic magma reservoir is adequate to account for the additional 6.5–15 Mt of S required at Pulang. Repeated diorite porphyry magma recharge may have supplied significant amounts of S and some Cl and rejuvenated the porphyry system, thus aiding formation of the large, long-lived magma reservoir that produced the porphyry Cu-Au deposit at Pulang.


Lithos ◽  
2021 ◽  
Vol 382-383 ◽  
pp. 105928
Author(s):  
Jian-Qiang Liu ◽  
Saskia Erdmann ◽  
Li-Hui Chen ◽  
Hui-Li Zhang ◽  
Bin Wu ◽  
...  

Lithos ◽  
2020 ◽  
Vol 376-377 ◽  
pp. 105780
Author(s):  
Sara Di Salvo ◽  
Riccardo Avanzinelli ◽  
Roberto Isaia ◽  
Alberto Zanetti ◽  
Tim Druitt ◽  
...  

2020 ◽  
Vol 47 (14) ◽  
Author(s):  
Philipp Ruprecht ◽  
Adam C. Simon ◽  
Adrian Fiege

Sign in / Sign up

Export Citation Format

Share Document