scholarly journals Magma recharge patterns control eruption styles and magnitudes at Popocatépetl volcano (Mexico)

Geology ◽  
2022 ◽  
Author(s):  
Martin F. Mangler ◽  
Chiara Maria Petrone ◽  
Julie Prytulak

Diffusion chronometry has produced petrological evidence that magma recharge in mafic to intermediate systems can trigger volcanic eruptions within weeks to months. However, less is known about longer-term recharge frequencies and durations priming magma reservoirs for eruptions. We use Fe-Mg diffusion modeling in orthopyroxene to show that the duration, frequency, and timing of pre-eruptive recharge at Popocatépetl volcano (Mexico) vary systematically with eruption style and magnitude. Effusive eruptions are preceded by 9–13 yr of increased recharge activity, compared to 15–100 yr for explosive eruptions. Explosive eruptions also record a higher number of individual recharge episodes priming the plumbing system. The largest explosive eruptions are further distinguished by an ~1 yr recharge hiatus directly prior to eruption. Our results offer valuable context for the interpretation of ongoing activity at Popocatépetl, and seeking similar correlations at other arc volcanoes may advance eruption forecasting by including constraints on potential eruption size and style.

2011 ◽  
Vol 11 (7) ◽  
pp. 1949-1956 ◽  
Author(s):  
M. A. Armienta ◽  
S. De la Cruz-Reyna ◽  
O. Cruz ◽  
N. Ceniceros ◽  
A. Aguayo ◽  
...  

Abstract. Ash emitted by volcanic eruptions, even of moderate magnitude, may affect the environment and the health of humans and animals through different mechanisms at distances significantly larger than those indicated in the volcanic hazard maps. One such mechanism is the high capacity of ash to transport toxic volatiles like fluoride, as soluble condensates on the particles' surface. The mobilization and hazards related to volcanic fluoride are discussed based on the data obtained during the recent activity of Popocatépetl volcano in Central Mexico.


2021 ◽  
Author(s):  
Martin Mangler ◽  
et al.

Items S1 (full time scale datasets), (S2) diffusion model details, and S3 (priming durations for eruptions with published time-scale data).<br>


2021 ◽  
Author(s):  
Martin Mangler ◽  
et al.

Items S1 (full time scale datasets), (S2) diffusion model details, and S3 (priming durations for eruptions with published time-scale data).<br>


Geology ◽  
2009 ◽  
Vol 37 (2) ◽  
pp. 107-110 ◽  
Author(s):  
Julie Roberge ◽  
Hugo Delgado-Granados ◽  
Paul J. Wallace

Author(s):  
Gerardo Mendo-Pérez ◽  
Alejandra Arciniega-Ceballos ◽  
Robin S. Matoza ◽  
Alejandro Rosado-Fuentes ◽  
Richard W. Sanderson ◽  
...  

Author(s):  
Quetzalcoatl Rodríguez-Pérez ◽  
Marisol Monterrubio-Velasco ◽  
F. Ramón Zúñiga ◽  
Carlos M. Valdés-González ◽  
Raúl Arámbula-Mendoza

2016 ◽  
Vol 16 (7) ◽  
pp. 4343-4367 ◽  
Author(s):  
Elisa Carboni ◽  
Roy G. Grainger ◽  
Tamsin A. Mather ◽  
David M. Pyle ◽  
Gareth E. Thomas ◽  
...  

Abstract. Sulfur dioxide (SO2) is an important atmospheric constituent that plays a crucial role in many atmospheric processes. Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. The Infrared Atmospheric Sounding Interferometer (IASI) on the METOP satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 and from 1300 to 1410 cm−1 (the 7.3 and 8.7 µm SO2 bands) returning both SO2 amount and altitude data. The scheme described in Carboni et al. (2012) has been applied to measure volcanic SO2 amount and altitude for 14 explosive eruptions from 2008 to 2012. The work includes a comparison with the following independent measurements: (i) the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii) the SO2 plumes heights, for the 2010 Eyjafjallajökull and 2011 Grimsvötn eruptions, have been compared with CALIPSO backscatter profiles. The results of the comparisons show that IASI SO2 measurements are not affected by underlying cloud and are consistent (within the retrieved errors) with the other measurements. The series of analysed eruptions (2008 to 2012) show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency for volcanic SO2 to reach the level of the tropopause during many of the moderately explosive eruptions observed. For the eruptions observed, this tendency was independent of the maximum amount of SO2 (e.g. 0.2 Tg for Dalafilla compared with 1.6 Tg for Nabro) and of the volcanic explosive index (between 3 and 5).


2003 ◽  
Vol 13 (03n04) ◽  
pp. 133-139 ◽  
Author(s):  
F. ALDAPE ◽  
J. FLORES M.

Samples of airborne particulate matter were collected in four sites along an east-west line from the Popocatépetl volcano after the eruption episode of June 30, 1997. The Popocatépetl volcano, with variable activity since it was known, is currently under low but continuous activity prolonged for almost one decade, with occasional moderate eruption episodes producing mainly fumes, ashes and volcanic dusts. The main objective of this study is to determine whether or not some elements have increased their presence in the atmosphere as a result of the volcanic activity, and also if some others, not usually found in urban aerosols, have appeared because of the same reason. In addition, the information obtained will be a source of scientific data for health risk assessment of the population exposed to volcanic emanations. The sample collection was performed on alternate days from July 10 to August 13 1997 in Puebla and Atlixco in Puebla State. Tlalpan within Mexico City, and Salazar in the State of Mexico. Two samples a day were taken in two periods: 7-19 h and 19-7 h. The samplers separated particles into two particle size fractions. PM25 and PM15. Elemental concentrations were determined by PIXE and the results obtained showed increased concentrations of mainly Ti and Fe in all sampling sites, thus indicating a long range transportation of volcanic dusts in both particle size fractions. Concentrations of Ti were found clearly above the average values of urban areas such as Mexico City, and although this element can be considered of low toxicity, the biological, metabolic and toxic effects on human beings are still under investigation.


Sign in / Sign up

Export Citation Format

Share Document