scholarly journals Structure Optimization of Mixed-Speed Train Traffic for Cyclic Timetable: Model and Algorithm Development

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Jiamin Zhang ◽  
Jiarui Zhang

Trains can be optimally spread over the period of the cyclic timetable. By integrating sequencing issue with headway time together, this paper studies the structure optimization of mixed-speed train traffic for a cyclic timetable. Firstly, by taking it as a job-shop problem with sequence-dependent setup times on one machine, in the type of infinite capacity resource with headway (ICR + H), the problem is transformed to alternative graph (AG) and then recast to the mixed-speed train traffic planning (MSTTP) model. For the multiobjective in MSTTP, three indicators are optimized, i.e., heterogeneity, cycle time, and buffer time, which correspond to diversity of train service toward passenger, capacity consumption of rail network, and stability of train operation, respectively. Secondly, the random-key genetic algorithm (RKGA) is proposed to tackle the sequence and headway simultaneously. Finally, RKGA is coded with visual studio C# and the proposed method is validated with a case study. The rail system considered is a line section encompassing a territory of 180 km with 15 mixed-speed trains in each cycle of the timetable. Results indicate the comprehensively balanced train plan for all stakeholders from random variations of train sequence and headway time. Both the quantitative proportion of heterogeneity/homogeneity (e.g., 2.5) about the optimized distribution of the mixed train traffic and the link between train headway time and the sequence for each traffic scenario are found. All the findings can be used to arrange the mixed-speed train traffic more scientifically.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Kemal Keskin ◽  
Abdurrahman Karamancioglu

A train operation optimization by minimizing its traction energy subject to various constraints is carried out using nature-inspired evolutionary algorithms. The optimization process results in switching points that initiate cruising and coasting phases of the driving. Due to nonlinear optimization formulation of the problem, nature-inspired evolutionary search methods, Genetic Simulated Annealing, Firefly, and Big Bang-Big Crunch algorithms were employed in this study. As a case study a real-like train and test track from a part of Eskisehir light rail network were modeled. Speed limitations, various track alignments, maximum allowable trip time, and changes in train mass were considered, and punctuality was put into objective function as a penalty factor. Results have shown that all three evolutionary methods generated effective and consistent solutions. However, it has also been shown that each one has different accuracy and convergence characteristics.


2021 ◽  
Vol 13 (13) ◽  
pp. 7504
Author(s):  
Jie Liu ◽  
Paul Schonfeld ◽  
Jinqu Chen ◽  
Yong Yin ◽  
Qiyuan Peng

Time reliability in a Rail Transit Network (RTN) is usually measured according to clock-based trip time, while the travel conditions such as travel comfort and convenience cannot be reflected by clock-based trip time. Here, the crowding level of trains, seat availability, and transfer times are considered to compute passengers’ Perceived Trip Time (PTT). Compared with the average PTT, the extra PTT needed for arriving reliably, which equals the 95th percentile PTT minus the average PTT, is converted into the monetary cost for estimating Perceived Time Reliability Cost (PTRC). The ratio of extra PTT needed for arriving reliably to the average PTT referring to the buffer time index is proposed to measure Perceived Time Reliability (PTR). To overcome the difficulty of obtaining passengers’ PTT who travel among rail transit modes, a Monte Carlo simulation is applied to generated passengers’ PTT for computing PTR and PTRC. A case study of Chengdu’s RTN shows that the proposed metrics and method measure the PTR and PTRC in an RTN effectively. PTTR, PTRC, and influential factors have significant linear relations among them, and the obtained linear regression models among them can guide passengers to travel reliably.


2021 ◽  
Vol 11 (11) ◽  
pp. 5107
Author(s):  
Miguel Ortíz-Barrios ◽  
Antonella Petrillo ◽  
Fabio De Felice ◽  
Natalia Jaramillo-Rueda ◽  
Genett Jiménez-Delgado ◽  
...  

Scheduling flexible job-shop systems (FJSS) has become a major challenge for different smart factories due to the high complexity involved in NP-hard problems and the constant need to satisfy customers in real time. A key aspect to be addressed in this particular aim is the adoption of a multi-criteria approach incorporating the current dynamics of smart FJSS. Thus, this paper proposes an integrated and enhanced method of a dispatching algorithm based on fuzzy AHP (FAHP) and TOPSIS. Initially, the two first steps of the dispatching algorithm (identification of eligible operations and machine selection) were implemented. The FAHP and TOPSIS methods were then integrated to underpin the multi-criteria operation selection process. In particular, FAHP was used to calculate the criteria weights under uncertainty, and TOPSIS was later applied to rank the eligible operations. As the fourth step of dispatching the algorithm, the operation with the highest priority was scheduled together with its initial and final time. A case study from the smart apparel industry was employed to validate the effectiveness of the proposed approach. The results evidenced that our approach outperformed the current company’s scheduling method by a median lateness of 3.86 days while prioritizing high-throughput products for earlier delivery.


Author(s):  
Minling Feng ◽  
Chaoxian Wu ◽  
Shaofeng Lu ◽  
Yihui Wang

Automatic train operation (ATO) systems are fast becoming one of the key components of the intelligent high-speed railway (HSR). Designing an effective optimal speed trajectory for ATO is critical to guide the high-speed train (HST) to operate with high service quality in a more energy-efficient way. In many advanced HSR systems, the traction/braking systems would provide multiple notches to satisfy the traction/braking demands. This paper modelled the applied force as a controlled variable based on the selection of notch to realise a notch-based train speed trajectory optimisation model to be solved by mixed integer linear programming (MILP). A notch selection model with flexible vertical relaxation was proposed to allow the traction/braking efforts to change dynamically along with the selected notch by introducing a series of binary variables. Two case studies were proposed in this paper where Case study 1 was conducted to investigate the impact of the dynamic notch selection on train operations, and the optimal result indicates that the applied force can be flexibly adjusted corresponding to different notches following a similar operation sequence determined by optimal train control theory. Moreover, in addition to the maximum traction/braking notches and coasting, medium notches with appropriate vertical relaxation would be applied in accordance with the specific traction/braking demands to make the model feasible. In Case study 2, a comprehensive numerical example with the parameters of CRH380AL HST demonstrates the robustness of the model to deal with the varying speed limit and gradient in a real-world scenario. The notch-based model is able to obtain a more realistic optimal strategy containing dynamic notch selection and speed trajectory with an increase (1.622%) in energy consumption by comparing the results of the proposed model and the non-notch model.


Author(s):  
Yaoyao Han ◽  
Xiaohui Chen ◽  
Minmin Xu ◽  
Youjun An ◽  
Fengshou Gu ◽  
...  

With the development of Industry 4.0 and requirement of smart factory, cellular manufacturing system (CMS) has been widely concerned in recent years, which may leads to reducing production cost and wip inventory due to its flexibility production with groups. Intercellular transportation consumption, sequence-dependent setup times, and batch issue in CMS are taken into consideration simultaneously in this paper. Afterwards, a multi-objective flexible job-shop cell scheduling problem (FJSCP) optimization model is established to minimize makespan, total energy consumption, and total costs. Additionally, an improved non-dominated sorting genetic algorithm is adopted to solve the problem. Meanwhile, for improving local search ability, hybrid variable neighborhood (HVNS) is adopted in selection, crossover, and mutation operations to further improve algorithm performance. Finally, the validity of proposed algorithm is demonstrated by datasets of benchmark scheduling instances from literature. The statistical result illustrates that improved method has a better or an equivalent performance when compared with some heuristic algorithms with similar types of instances. Besides, it is also compared with one type scalarization method, the proposed algorithm exhibits better performance based on hypervolume analysis under different instances.


1998 ◽  
Vol 36 (11) ◽  
pp. 3095-3111 ◽  
Author(s):  
C.-J. Liao ◽  
H.-T. Lin

Sign in / Sign up

Export Citation Format

Share Document