micro slicing
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Fabian Mueller ◽  
Jan Hermann ◽  
Stefan Weber ◽  
Gabriela O'Toole Bom Braga ◽  
Vedat Topsakal

Objective: During robotic cochlear implantation, an image-guided robotic system provides keyhole access to the scala tympani of the cochlea to allow insertion of the cochlear implant array. To standardize minimally traumatic robotic access to the cochlea, additional hard and soft constraints for inner ear access were proposed during trajectory planning. This extension of the planning strategy aims to provide a trajectory that preserves the anatomical and functional integrity of critical intra-cochlear structures during robotic execution and allows implantation with minimal insertion angles and risk of scala deviation.Methods: The OpenEar dataset consists of a library with eight three-dimensional models of the human temporal bone based on computed tomography and micro-slicing. Soft constraints for inner ear access planning were introduced that aim to minimize the angle of cochlear approach, minimize the risk of scala deviation and maximize the distance to critical intra-cochlear structures such as the osseous spiral lamina. For all cases, a solution space of Pareto-optimal trajectories to the round window was generated. The trajectories satisfy the hard constraints, specifically the anatomical safety margins, and optimize the aforementioned soft constraints. With user-defined priorities, a trajectory was parameterized and analyzed in a virtual surgical procedure.Results: In seven out of eight cases, a solution space was found with the trajectories safely passing through the facial recess. The solution space was Pareto-optimal with respect to the soft constraints of the inner ear access. In one case, the facial recess was too narrow to plan a trajectory that would pass the nerves at a sufficient distance with the intended drill diameter. With the soft constraints introduced, the optimal target region was determined to be in the antero-inferior region of the round window membrane.Conclusion: A trend could be identified that a position between the antero-inferior border and the center of the round window membrane appears to be a favorable target position for cochlear tunnel-based access through the facial recess. The planning concept presented and the results obtained therewith have implications for planning strategies for robotic surgical procedures to the inner ear that aim for minimally traumatic cochlear access and electrode array implantation.


Author(s):  
Mathieu Boussard ◽  
Nicolas Le Sauze ◽  
Serge Papillon ◽  
Pierre Peloso ◽  
Remi Varloot
Keyword(s):  

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Daniel Sieber ◽  
Peter Erfurt ◽  
Samuel John ◽  
Gabriel Ribeiro Dos Santos ◽  
Daniel Schurzig ◽  
...  

1995 ◽  
Vol 31 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Paul L. Bishop ◽  
Tian C. Zhang ◽  
Yun-Chang Fu

The influence of biofilm structure on transport and transformation processes in biofilms has been investigated microscopically using microelectrodes, a micro-slicing procedure and various chemical and microbiological tests. The study demonstrates that the biofilm structure is highly stratified, characterized by an increase of biofilm density, a decrease of metabolically active biomass, and a decrease of porosity with biofilm depth. Both the effective diffusivity for dissolved oxygen and the effectiveness factor decrease with biofilm depth. Competition for substrate and space in biofilms results in this stratified structure, which is also affected by biofilm thickness. The study reveals that there are different trends for the density increase and the decreases of porosity, microbial activity and DO effective diffusivity with biofilm depth for different biofilm thicknesses. The results of this study are helpful in obtaining a clearer physical description of biofilms, and help to bridge the gap between the mathematical modelling and external-phenomenon observation of biofilm systems.


1994 ◽  
Vol 29 (7) ◽  
pp. 335-344 ◽  
Author(s):  
Tian C. Zhang ◽  
Paul L. Bishop

The spatial distributions of properties of biofilms have been investigated by using three different kinds of biofilms as test materials. Biofilms, cultured by laboratory-scale rotating drum biofilm reactors with synthetic wastewater, were first cut into 10 to 20 µm thick slices using a microtome, and then apportioned into samples representing 3 or 4 layers. The biofilm properties of each layer were investigated by measuring the densities, phospholipid concentrations, and AR18 dye adsorption abilities. The bacterial population distributions and the metabolically active bacterial distributions were studied by plate count methods or a MPN method, and the tetrazolium dye (INT) reduction method, respectively. Based on statistic evaluations, the micro-slicing technique, the procedure for analyzing phospholipid concentrations of biofilms, and the AR18 dye adsorption tests were suitable to be used in biofilm studies. It was found that the densities of biofilms in the bottom layers were 4 to 7 times higher than those in the top layers. For thick biofilms (thickness > 500 µm), the INT active bacteria decreased from 82-89% in the top layers to 5-11% in the bottom layers. The porosities of thick biofilms changed from 83-92% in the top layers to 56-64% in the bottom layers. For thin biofilms (thickness < 500 µm), the porosities of biofilms changed from 72-75% in the top layers to 35-44% in the bottom layers. Highly spatial distributions of bacterial populations, mean pore radius, and specific surface areas were also observed. As a result of these spatial distributions, the ratio of effective diffusivity to diffusivity in the bulk solution also shows a decrease with depth of the biofilm. Assuming biofilm properties are of a uniform distribution may be an over-simplified assumption, valid only in specific cases.


Sign in / Sign up

Export Citation Format

Share Document