Suction effects on transitional bubbles

Author(s):  
Redha A. Wahidi ◽  
Semih M. Olçmen

The effects of suction on the structure of a transitional bubble forming on a low-Reynolds-number airfoil are examined using the Reynolds-averaged Navier–Stokes and k–kL–ω transition model. The suction effects on the laminar and turbulent portions of the separation bubble and the locations of the main points in the separation bubble are discussed in relation to the transition process of the bubble. A single suction distribution located in the region of the baseline transitional bubble is used with two suction rates. One suction rate is sufficiently strong to eliminate the bubble from its original location and a lower suction rate that is only sufficient to create shallower bubbles. Eliminating the bubble from its original location maintains a laminar boundary layer downstream of the baseline transition location until a shallower separation bubble forms near the trailing edge. The lower suction rate shortens the separation bubble and reduces its height while approximately maintaining its original location. Analyzing the lengths of different portions of the bubble suggests that suction affects the instability growth rate and the nonlinear interactions in the separated shear layer. The lower suction rate shortens the distance between the separation and transition onset suggesting a higher growth rate of the inviscid instability. The higher suction rate, on the other hand, increases the distance between the separation and transition onset indicating a stabilizing effect by slowing down the growth rate of the inviscid instability. However, the percentage of distance between transition and separation to the total length is only slightly affected by the suction and the angle of attack.

2005 ◽  
Vol 128 (2) ◽  
pp. 232-238 ◽  
Author(s):  
Stephen K. Roberts ◽  
Metin I. Yaras

In this paper, large-eddy simulation of the transition process in a separation bubble is compared to experimental results. The measurements and simulations are conducted under low freestream turbulence conditions over a flat plate with a streamwise pressure distribution typical of those encountered on the suction side of turbine airfoils. The computational grid is refined to the extent that the simulation qualifies as a “coarse” direct numerical simulation. The simulations are shown to accurately capture the transition process in the separated shear layer. The results of these simulations are used to gain further insight into the breakdown mechanisms in transitioning separation bubbles.


2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Chiara Bernardini ◽  
Stuart I. Benton ◽  
Jen-Ping Chen ◽  
Jeffrey P. Bons

The mechanism of separation control by sound excitation is investigated on the aft-loaded low-pressure turbine (LPT) blade profile, the L1A, which experiences a large boundary layer separation at low Reynolds numbers. Previous work by the authors has shown that on a laminar separation bubble such as that experienced by the front-loaded L2F profile, sound excitation control has its best performance at the most unstable frequency of the shear layer due to the exploitation of the linear instability mechanism. The different loading distribution on the L1A increases the distance of the separated shear layer from the wall and the exploitation of the same linear mechanism is no longer effective in these conditions. However, significant control authority is found in the range of the first subharmonic of the natural unstable frequency. The amplitude of forced excitation required for significant wake loss reduction is higher than that needed when exploiting linear instability, but unlike the latter case, no threshold amplitude is found. The fluid-dynamics mechanisms under these conditions are investigated by particle image velocimetry (PIV) measurements. Phase-locked PIV data gives insight into the growth and development of structures as they are shed from the shear layer and merge to lock into the excited frequency. Unlike near-wall laminar separation sound control, it is found that when such large separated shear layers occur, sound excitation at subharmonics of the fundamental frequency is still effective with high-Tu levels.


Author(s):  
A. Samson ◽  
S. Sarkar

The dynamics of separation bubble under the influence of continuous jets ejected near the semi-circular leading edge of a flat plate is presented. Two different streamwise injection angles 30° and 60° and velocity ratios 0.5 and 1 for Re = 25000 and 55000 (based on the leading-edge diameter) are considered here. The flow visualizations illustrating jet and separated layer interactions have been carried out with PIV. The objective of this study is to understand the mutual interactions of separation bubble and the injected jets. It is observed that flow separates at the blending point of semi-circular arc and flat plate. The separated shear layer is laminar up to 20% of separation length after which perturbations are amplified and grows in the second-half of the bubble leading to breakdown and reattachment. Blowing has significantly affected the bubble length and thus, turbulence generation. Instantaneous flow visualizations supports the unsteadiness and development of three-dimensional motions leading to formation of Kelvin-Helmholtz rolls and shedding of large-scale vortices due to jet and bubble interactions. In turn, it has been seen that both the spanwise and streamwise dilution of injected air is highly influenced by the separation bubble.


Author(s):  
Michael J. Collison ◽  
Peter X. L. Harley ◽  
Domenico di Cugno

Low speed, small scale turbomachinery operates at low Reynolds number with transition phenomena occurring. In small consumer product applications, high efficiency and low noise are key performance metrics. Transition behaviour will partly determine the state of the boundary layer at the trailing edge; whether it is laminar, turbulent or separated impacts aerodynamic and acoustic performance. This study aimed to evaluate a commercially available CFD transition model on a low Reynolds number Eppler E387 airfoil and identify whether it was able to correctly model the boundary layer transition, and at what expense. CFD was carried out utilising the ANSYS Shear Stress Transport (SST) k-ω γ-Reθ transition model. The CFD progressed from 2D in Fluent v150, through to single cell thickness 3D (pseudo 2D) in CFX v172. An Eppler E387 low Reynolds number airfoil, for which experimental data was readily available from literature at Re = 200,000 was used as the validation case for the CFD, with results computed at numerous incidence angles and mesh densities. Additionally, experimental surface oil flow visualisation was undertaken in a wind tunnel using a scaled E387 airfoil for the zero incidence case at Re = 50,000. The flow visualisation exhibited the expected key features of transition in the breakdown of the boundary layer from laminar to turbulent, and was used as a validation case for the CFD transition model. The comparison between the results from the CFD transition model and the experimental data from literature suggested varying levels of agreement based on the mesh density and CFD solver in the starting location of the laminar separation bubble, with higher disparity for the position of the reattachment point. Whether 2D or 3D, the prediction accuracy was seen to worsen at high incidence angles. Finally, the location of the laminar separation bubble between CFD and oil flow visualisation had good agreement and a set of guidelines on the mesh parameters which can be applied to low Reynolds number turbomachinery simulations was determined.


2019 ◽  
Vol 878 ◽  
pp. 5-36 ◽  
Author(s):  
Yuji Hattori ◽  
Francisco J. Blanco-Rodríguez ◽  
Stéphane Le Dizès

The linear instability of a vortex ring with swirl with Gaussian distributions of azimuthal vorticity and velocity in its core is studied by direct numerical simulation. The numerical study is carried out in two steps: first, an axisymmetric simulation of the Navier–Stokes equations is performed to obtain the quasi-steady state that forms a base flow; then, the equations are linearized around this base flow and integrated for a sufficiently long time to obtain the characteristics of the most unstable mode. It is shown that the vortex rings are subjected to curvature instability as predicted analytically by Blanco-Rodríguez & Le Dizès (J. Fluid Mech., vol. 814, 2017, pp. 397–415). Both the structure and the growth rate of the unstable modes obtained numerically are in good agreement with the analytical results. However, a small overestimation (e.g. 22 % for a curvature instability mode) by the theory of the numerical growth rate is found for some instability modes. This is most likely due to evaluation of the critical layer damping which is performed for the waves on axisymmetric line vortices in the analysis. The actual position of the critical layer is affected by deformation of the core due to the curvature effect; as a result, the damping rate changes since it is sensitive to the position of the critical layer. Competition between the curvature and elliptic instabilities is also investigated. Without swirl, only the elliptic instability is observed in agreement with previous numerical and experimental results. In the presence of swirl, sharp bands of both curvature and elliptic instabilities are obtained for $\unicode[STIX]{x1D700}=a/R=0.1$, where $a$ is the vortex core radius and $R$ the ring radius, while the elliptic instability dominates for $\unicode[STIX]{x1D700}=0.18$. New types of instability mode are also obtained: a special curvature mode composed of three waves is observed and spiral modes that do not seem to be related to any wave resonance. The curvature instability is also confirmed by direct numerical simulation of the full Navier–Stokes equations. Weakly nonlinear saturation and subsequent decay of the curvature instability are also observed.


2017 ◽  
Vol 47 (1) ◽  
pp. 49-68 ◽  
Author(s):  
Robert D. Hetland

AbstractBaroclinic instabilities are ubiquitous in many types of geostrophic flow; however, they are seldom observed in river plumes despite strong lateral density gradients within the plume front. Supported by results from a realistic numerical simulation of the Mississippi–Atchafalaya River plume, idealized numerical simulations of buoyancy-driven flow are used to investigate baroclinic instabilities in buoyancy-driven flow over a sloping bottom. The parameter space is defined by the slope Burger number S = Nf−1α, where N is the buoyancy frequency, f is the Coriolis parameter, and α is the bottom slope, and the Richardson number Ri = N2f2M−4, where M2 = |∇Hb| is the magnitude of the lateral buoyancy gradients. Instabilities only form in a subset of the simulations, with the criterion that SH ≡ SRi−1/2 = Uf−1W−1 = M2f−2α 0.2, where U is a horizontal velocity scale and SH is a new parameter named the horizontal slope Burger number. Suppression of instability formation for certain flow conditions contrasts linear stability theory, which predicts that all flow configurations will be subject to instabilities. The instability growth rate estimated in the nonlinear 3D model is proportional to ωImaxS−1/2, where ωImax is the dimensional growth rate predicted by linear instability theory, indicating that bottom slope inhibits instability growth beyond that predicted by linear theory. The constraint SH 0.2 implies a relationship between the inertial radius Li = Uf−1 and the plume width W. Instabilities may not form when 5Li > W; that is, the plume is too narrow for the eddies to fit.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
M. Mahdavi ◽  
H. Khanzadeh

Weibel electromagnetic instability has been studied analytically in relativistic plasma with high parallel temperature, where|α=(mc2/T∥)(1+p^⊥2/m2c2)1/2|≪1and while the collision effects of electron-ion scattering have also been considered. According to these conditions, an analytical expression is derived for the growth rate of the Weibel instability for a limiting case of|ζ=α/2(ω′/ck)|≪1, whereω′is the sum of the wave frequency of instability and the collision frequency of electrons with background ions. The results show that in the limiting conditionα≪1there is an unusual situation of the Weibel instability so thatT∥≫T⊥, while in the classic Weibel instabilityT∥≪T⊥. The obtained results show that the growth rate of the Weibel instability will be decreased due to an increase in the number of collisions and a decrease in the anisotropic temperature by the increasing of plasma density, while the increase of the parameterγ^⊥=(1+p^⊥2/m2c2)1/2leads to the increase of the Weibel instability growth rate.


1995 ◽  
Author(s):  
H.V. Wong ◽  
H.L. Berk ◽  
B.N. Breizman

Author(s):  
Andrew P. S. Wheeler ◽  
Richard D. Sandberg

In this paper we use direct numerical simulation to investigate the unsteady flow over a model turbine blade-tip at engine scale Reynolds and Mach numbers. The DNS is performed with a new in-house multi-block structured compressible Navier-Stokes solver purposely developed for exploiting high-performance computing systems. The particular case of a transonic tip flow is studied since previous work has suggested compressibility has an important influence on the turbulent nature of the separation bubble at the inlet to the gap and subsequent flow reattachment. The effects of free-stream turbulence, cross-flow and pressure-side boundary-layer on the tip flow aerodynamics and heat transfer are investigated. For ‘clean’ in-flow cases we find that even at engine scale Reynolds numbers the tip flow is intermittent in nature (neither laminar nor fully turbulent). The breakdown to turbulence occurs through the development of spanwise modes with wavelengths around 25% of the gap height. Cross-flows of 25% of the streamwise gap exit velocity are found to increase the stability of the tip flow, and to significantly reduce the turbulence production in the separation bubble. This is predicted through in-house linear stability analysis, and confirmed by the DNS. For the case when the inlet flow has free-stream turbulence, viscous dissipation and the rapid acceleration of the flow at the inlet to the tip-gap causes significant distortion of the vorticity field and reductions of turbulence intensity as the flow enters the tip gap. This means that only very high turbulence levels at the inlet to the computational domain significantly affect the tip heat transfer. The DNS results are compared with RANS predictions using the Spalart-Allmaras and k–ω SST turbulence models. The RANS and DNS predictions give similar qualitative features for the tip flow, but the size and shape of the inlet separation bubble and shock positions differ noticeably. The RANS predictions are particularly insensitive to free-stream turbulence.


2021 ◽  
pp. 0309524X2110550
Author(s):  
Moutaz Elgammi ◽  
Tonio Sant ◽  
Atiyah Abdulmajid Ateeah

Modeling of the flow over aerofoil profiles at low Reynolds numbers is difficult due to the complex physics associated with the laminar flow separation mechanism. Two major problems arise in the estimation of profile drag: (1) the drag force at low Reynolds numbers is extremely small to be measured in a wind tunnel by force balance techniques, (2) the profile drag is usually calculated by pressure integration, hence the skin friction component of drag is excluded. In the present work, three different 4-digit NACA aerofoils are investigated. Measurements are conducted in an open-ended subsonic wind tunnel, while numerical work is performed by time Reynolds-averaged Navier Stokes (RANS) coupled with the laminar-kinetic-energy ( K-kl-w) turbulence model. The influence of the flow separation bubbles and transition locations on the profile drag is discussed and addressed. This paper gives important insights into importance of measurements at low Reynolds numbers for better aerodynamic loads predictions.


Sign in / Sign up

Export Citation Format

Share Document