incremental classification
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 13)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
pp. 240-254
Author(s):  
Joris Voerman ◽  
Ibrahim Souleiman Mahamoud ◽  
Aurélie Joseph ◽  
Mickael Coustaty ◽  
Vincent Poulain d’Andecy ◽  
...  

Author(s):  
Andrea Bontempelli ◽  
Stefano Teso ◽  
Fausto Giunchiglia ◽  
Andrea Passerini

The ability to learn from human supervision is fundamental for personal assistants and other interactive applications of AI. Two central challenges for deploying interactive learners in the wild are the unreliable nature of the supervision and the varying complexity of the prediction task. We address a simple but representative setting, incremental classification in the wild, where the supervision is noisy and the number of classes grows over time. In order to tackle this task, we propose a redesign of skeptical learning centered around Gaussian Processes (GPs). Skeptical learning is a recent interactive strategy in which, if the machine is sufficiently confident that an example is mislabeled, it asks the annotator to reconsider her feedback. In many cases, this is often enough to obtain clean supervision. Our redesign, dubbed ISGP , leverages the uncertainty estimates supplied by GPs to better allocate labeling and contradiction queries, especially in the presence of noise. Our experiments on synthetic and real-world data show that, as a result, while the original formulation of skeptical learning produces over-confident models that can fail completely in the wild, ISGP works well at varying levels of noise and as new classes are observed.


2019 ◽  
Vol 11 (22) ◽  
pp. 2673 ◽  
Author(s):  
Hongwei Zhao ◽  
Zhongxin Chen ◽  
Hao Jiang ◽  
Wenlong Jing ◽  
Liang Sun ◽  
...  

Timely and accurate estimation of the area and distribution of crops is vital for food security. Optical remote sensing has been a key technique for acquiring crop area and conditions on regional to global scales, but great challenges arise due to frequent cloudy days in southern China. This makes optical remote sensing images usually unavailable. Synthetic aperture radar (SAR) could bridge this gap since it is less affected by clouds. The recent availability of Sentinel-1A (S1A) SAR imagery with a 12-day revisit period at a high spatial resolution of about 10 m makes it possible to fully utilize phenological information to improve early crop classification. In deep learning methods, one-dimensional convolutional neural networks (1D CNNs), long short-term memory recurrent neural networks (LSTM RNNs), and gated recurrent unit RNNs (GRU RNNs) have been shown to efficiently extract temporal features for classification tasks. However, due to the complexity of training, these three deep learning methods have been less used in early crop classification. In this work, we attempted to combine them with an incremental classification method to avoid the need for training optimal architectures and hyper-parameters for data from each time series. First, we trained 1D CNNs, LSTM RNNs, and GRU RNNs based on the full images’ time series to attain three classifiers with optimal architectures and hyper-parameters. Then, starting at the first time point, we performed an incremental classification process to train each classifier using all of the previous data, and obtained a classification network with all parameter values (including the hyper-parameters) at each time point. Finally, test accuracies of each time point were assessed for each crop type to determine the optimal time series length. A case study was conducted in Suixi and Leizhou counties of Zhanjiang City, China. To verify the effectiveness of this method, we also implemented the classic random forest (RF) approach. The results were as follows: (i) 1D CNNs achieved the highest Kappa coefficient (0.942) of the four classifiers, and the highest value (0.934) in the GRU RNNs time series was attained earlier than with other classifiers; (ii) all three deep learning methods and the RF achieved F measures above 0.900 before the end of growth seasons of banana, eucalyptus, second-season paddy rice, and sugarcane; while, the 1D CNN classifier was the only one that could obtain an F-measure above 0.900 for pineapple before harvest. All results indicated the effectiveness of the solution combining the deep learning models with the incremental classification approach for early crop classification. This method is expected to provide new perspectives for early mapping of croplands in cloudy areas.


Sign in / Sign up

Export Citation Format

Share Document