reef zone
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Minpeng Song ◽  
Lixin Zhu ◽  
Lu Wang ◽  
Jinxiao Wang ◽  
Zhaoyi Nie ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2107
Author(s):  
Joshua A. Haslun ◽  
Briana Hauff-Salas ◽  
Kevin B. Strychar ◽  
James M. Cervino ◽  
Nathaniel E. Ostrom

Coral communities of the Florida Reef Tract (FRT) have changed dramatically over the past 30 years. Coral cover throughout the FRT is disproportionately distributed; >70% of total coral cover is found within the inshore patch reef zone (<2 km from shore) compared to 30% found within the offshore bank reef zone (>5 km from shore). Coral mortality from disease has been differentially observed between inshore and offshore reefs along the FRT. Therefore, differences between the response of inshore and offshore coral populations to bacterial challenge may contribute to differences in coral cover. We examined immune system activation in Porites astreoides (Lamarck, 1816), a species common in both inshore and offshore reef environments in the FRT. Colonies from a representative inshore and offshore site were reciprocally transplanted and the expression of three genes monitored biannually for two years (two summer and two winter periods). Variation in the expression of eukaryotic translation initiation factor 3, subunit H (eIF3H), an indicator of cellular stress in Porites astreoides, did not follow annual patterns of seawater temperatures (SWT) indicating the contribution of other stressors (e.g., irradiance). Greater expression of tumor necrosis factor (TNF) receptor associated factor 3 (TRAF3), a signaling protein of the inflammatory response, was observed among corals transplanted to, or located within the offshore environment indicating that an increased immune response is associated with offshore coral more so than the inshore coral (p < 0.001). Corals collected from the offshore site also upregulated the expression of adenylyl cyclase associated protein 2 (ACAP2), increases which are associated with decreasing innate immune system inflammatory responses, indicating a counteractive response to increased stimulation of the innate immune system. Activation of the innate immune system is a metabolically costly survival strategy. Among the two reefs studied, the offshore population had a smaller mean colony size and decreased colony abundance compared to the inshore site. This correlation suggests that tradeoffs may exist between the activation of the innate immune system and survival and growth. Consequently, immune system activation may contribute to coral community dynamics and declines along the FRT.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Carsten G. B. Grupstra ◽  
Kristen M. Rabbitt ◽  
Lauren I. Howe-Kerr ◽  
Adrienne M. S. Correa

Abstract Background The microbiomes of foundation (habitat-forming) species such as corals and sponges underpin the biodiversity, productivity, and stability of ecosystems. Consumers shape communities of foundation species through trophic interactions, but the role of consumers in dispersing the microbiomes of such species is rarely examined. For example, stony corals rely on a nutritional symbiosis with single-celled endosymbiotic dinoflagellates (family Symbiodiniaceae) to construct reefs. Most corals acquire Symbiodiniaceae from the environment, but the processes that make Symbiodiniaceae available for uptake are not resolved. Here, we provide the first comprehensive, reef-scale demonstration that predation by diverse coral-eating (corallivorous) fish species promotes the dispersal of Symbiodiniaceae, based on symbiont cell densities and community compositions from the feces of four obligate corallivores, three facultative corallivores, two grazer/detritivores as well as samples of reef sediment and water. Results Obligate corallivore feces are environmental hotspots of Symbiodiniaceae cells: live symbiont cell concentrations in such feces are 5–7 orders of magnitude higher than sediment and water environmental reservoirs. Symbiodiniaceae community compositions in the feces of obligate corallivores are similar to those in two locally abundant coral genera (Pocillopora and Porites), but differ from Symbiodiniaceae communities in the feces of facultative corallivores and grazer/detritivores as well as sediment and water. Combining our data on live Symbiodiniaceae cell densities in feces with in situ observations of fish, we estimate that some obligate corallivorous fish species release over 100 million Symbiodiniaceae cells per 100 m2 of reef per day. Released corallivore feces came in direct contact with coral colonies in the fore reef zone following 91% of observed egestion events, providing a potential mechanism for the transfer of live Symbiodiniaceae cells among coral colonies. Conclusions Taken together, our findings show that fish predation on corals may support the maintenance of coral cover on reefs in an unexpected way: through the dispersal of beneficial coral symbionts in corallivore feces. Few studies examine the processes that make symbionts available to foundation species, or how environmental reservoirs of such symbionts are replenished. This work sets the stage for parallel studies of consumer-mediated microbiome dispersal and assembly in other sessile, habitat-forming species.


2021 ◽  
Vol 62 (03) ◽  
pp. 357-376
Author(s):  
A.E. Kontorovich ◽  
A.I. Varlamov ◽  
A.S. Efimov ◽  
V.A. Kontorovich ◽  
I.V. Korovnikov ◽  
...  

Abstract ––In this paper we present a stratigraphic scheme for the subdivision and correlation of the Cambrian deposits in the south of the cis-Yenisei area of West Siberia, which was adopted as a current scheme by the decision of the Interdepartmental Stratigraphic Committee in 2018. This scheme is based on the data from stratigraphic test wells (Lemok-1, Averinskaya-150, Tyiskaya-1, Vostok-1, Vostok-3, Vostok-4, etс.). In the study area, two structure-facies zones were identified: Kas (Lemok-1, Averinskaya-150, Tyiskaya-1, Vostok-4, and Eloguiskaya-1 wells), where sedimentary complexes accumulated in a salt subbasin, and Ket’ (Vostok-1 and Vostok-3 wells) with the deposition in an open sea basin. The boundary between these structure-facies zones is drawn along the inferred N–S-trending barrier reef zone. The rubrication in this paper is compiled in accordance with the requirements of the Stratigraphic Code of Russia for explanatory notes for regional stratigraphic schemes. Local stratigraphic subdivisions (formations, strata) are described and compared with the adjacent Turukhansk–Irkutsk–Olekma facies region of the Siberian Platform.


2021 ◽  
Author(s):  
Carsten Guillaume Bruno Grupstra ◽  
Kristen M. Rabbitt ◽  
Lauren I. Howe-Kerr ◽  
Adrienne M.S. Correa

Abstract Background: The microbiomes of foundation (habitat-forming) species such as corals and sponges underpin the biodiversity, productivity, and stability of ecosystems. Consumers shape communities of foundation species through trophic interactions, but the role of consumers in dispersing the microbiomes of such species is rarely examined. For example, stony corals rely on a nutritional symbiosis with single-celled endosymbiotic dinoflagellates (family Symbiodiniaceae) to construct reefs. Most corals acquire Symbiodiniaceae from the environment, but the processes that make Symbiodiniaceae available for uptake are not resolved. Here, we provide the first comprehensive, reef-scale demonstration that predation by diverse coral-eating (corallivorous) fish species promotes the dispersal of Symbiodiniaceae, based on symbiont cell densities and community compositions from the feces of four obligate corallivores, three facultative corallivores, two grazer/detritivores as well as samples of reef sediment and water.Results: Obligate corallivore feces are environmental hotspots of Symbiodiniaceae cells: live symbiont cell concentrations in such feces are 5-7 orders of magnitude higher than sediment and water environmental reservoirs. Symbiodiniaceae community compositions in the feces of obligate corallivores are similar to those in two locally abundant coral genera (Pocillopora and Porites), but differ from Symbiodiniaceae communities in the feces of facultative corallivores and grazer/detritivores as well as sediment and water. Combining our data on live Symbiodiniaceae cell densities in feces with in situ observations of fish, we estimate that some obligate corallivorous fish species release over 100 million Symbiodiniaceae cells per 100 m2 of reef per day. Released corallivore feces came in direct contact with coral colonies in the fore reef zone following 91% of observed egestion events, providing a potential mechanism for the transfer of live Symbiodiniaceae cells among coral colonies. Conclusions: Taken together, our findings show that fish predation on corals may support the maintenance of coral cover on reefs in an unexpected way: through the dispersal of beneficial coral symbionts in corallivore feces. Few studies examine the processes that make symbionts available to foundation species, or how environmental reservoirs of such symbionts are replenished. This work sets the stage for parallel studies of consumer-mediated microbiome dispersal and assembly in other sessile, habitat-forming species.


2021 ◽  
Vol 7 ◽  
Author(s):  
Susann Rossbach ◽  
Andrea Anton ◽  
Carlos M. Duarte

Giant clams (Subfamily Tridacninae), are important members of Indo-Pacific coral reefs, playing multiple roles in the framework of these communities. Although they are prominent species in Red Sea reefs, data on their distribution and densities in the region are scarce. The present study provides the first large-scale survey of Red Sea Tridacna spp. densities, where we examined a large proportion of the Saudi Arabian Red Sea coast (1,300 km; from 18° to 29°N). Overall, Tridacninae were found at densities of 0.19 ± 0.43 individuals m–2 (±SD). Out of the total 4,002 observed clams, the majority (89%) were Tridacna maxima, with 0.17 ± 0.37 individuals m–2, while only 11% were Tridacna squamosa clams with 0.02 ± 0.07 individuals m–2. We also report on a few (total 6) Tridacna squamosina specimens, found at a single reef. We identified different geographical parameters (i.e., latitude and distance to shore) and local environmental factors (i.e., depth and reef zone) as the main drivers for local Tridacna spp. densities. Our results show that the drivers influencing the densities of Red Sea giant clams are complex due to their co-occurrence and that this complexity might explain the high variation in Tridacninae abundances across the Indo-Pacific, but also within a given reef. We also estimate that giant clam calcification likely contributes to an average of 0.7%, but potentially up to 9%, of the overall mean calcium carbonate budget of Red Sea coral reef communities.


2020 ◽  
Author(s):  
Carlos González-Gándara ◽  
Ernesto A. Chávez

The state on knowledge of fish communities associated with coral reefs of the southern Gulf of Mexico (Veracruz, Campeche bank), and eastern Yucatan on the Caribbean is reviewed, in addition to a description of the main fisheries of the area. The review includes coral reef fish of Veracruz, the Campeche Bank, and reefs running along the Caribbean coast up to the border with Belize. Data recorded suggest that the heterogeneity of different levels (region, reef and reef zone) may be responsible for a larger number of niches available, promoting higher specific diversity that is more evident in the Caribbean reefs. The environmental conditions create patterns of differential abundance among the three zones. The main regional fisheries include more than 60 species and the current yield suggests a 30% reduction compared to catch volumes recorded a few years ago. The changes in coral coverage and the fishing pressure over coral reefs have exerted effects on species of fishing importance.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10389
Author(s):  
Luz Verónica Monroy-Velázquez ◽  
Rosa E. Rodríguez-Martínez ◽  
Paul Blanchon ◽  
Fernando Alvarez

Motile cryptofauna inhabiting coral reefs are complex assemblages that utilize the space available among dead coral stands and the surrounding coral rubble substrate. They comprise a group of organisms largely overlooked in biodiversity estimates because they are hard to collect and identify, and their collection causes disturbance that is unsustainable in light of widespread reef degradation. Artificial substrate units (ASUs) provide a better sampling alternative and have the potential to enhance biodiversity estimates. The present study examines the effectiveness of ASUs made with defaunated coral rubble to estimate the diversity of motile cryptic crustaceans in the back-reef zone of the Puerto Morelos Reef National Park, Mexico. Species richness, Simpson’s diversity index, Shannon–Wiener index and the composition of assemblages were compared between ASUs and samples from the surrounding coral rubble substrate. A combined total of 2,740 specimens of 178 different species, belonging to five orders of Crustacea (Amphipoda, Cumacea, Isopoda, Tanaidacea and Decapoda) were collected. Species richness was higher in the surrounding coral rubble and Shannon–Wiener and Simpson indexes were higher in ASUs. Species composition differed between methods, with only 71 species being shared among sampling methods. Decapoda was more speciose in ASUs and Peracarids in the surrounding coral rubble. Combining the use of ASUs with surrounding rubble provided a better inventory of motile cryptic crustacean biodiversity, as 65% of the species were represented by one or two specimens.


2020 ◽  
Author(s):  
Carsten Guillaume Bruno Grupstra ◽  
Kristen M. Rabbitt ◽  
Lauren I. Howe-Kerr ◽  
Adrienne M.S. Correa

Abstract Background: The microbiomes of foundation (habitat-forming) species, including stony corals, soft corals, and sponges, underpin the biodiversity, productivity, and stability of ecosystems. Consumers shape communities of foundation species through trophic interactions, but the role of consumers in dispersing the microbiomes of such species is rarely examined. For example, stony corals rely on a nutritional symbiosis with single-celled endosymbiotic dinoflagellates (family Symbiodiniaceae) to construct reefs. Most corals acquire Symbiodiniaceae from the environment, but the processes that make Symbiodiniaceae available for uptake are not resolved. Here, we provide the first comprehensive, reef-scale demonstration that predation by diverse coral-eating (corallivorous) fish species promotes the dispersal of Symbiodiniaceae, based on symbiont cell densities and community compositions from the feces of four obligate corallivores, three facultative corallivores, two grazer/detritivores as well as samples of reef sediment and water.Results: Obligate corallivore feces are environmental hotspots of Symbiodiniaceae cells; live symbiont cell concentrations in such feces are 5-7 orders of magnitude higher than sediment and water environmental reservoirs. Symbiodiniaceae community compositions in the feces of obligate corallivores are similar to those in two locally abundant coral genera (Pocillopora and Porites), but differ from Symbiodiniaceae communities in the feces of facultative corallivores and grazer/detritivores as well as sediment and water. Combining our data on live Symbiodiniaceae cell densities in feces with in situ observations of fish, we estimate that some obligate corallivorous fish species release over 100 million Symbiodiniaceae cells per 100 m2 of reef per day. Released corallivore feces came in direct contact with coral colonies in the fore reef zone following 91% of observed egestion events, providing a potential mechanism for the transfer of live Symbiodiniaceae cells among coral colonies. Conclusions: Taken together, our findings show that fish predation on corals may support the maintenance of coral cover on reefs in an unexpected way: through the dispersal of beneficial coral symbionts in corallivore feces. Few studies examine the processes that make symbionts available to foundation species, or how environmental reservoirs of such symbionts are replenished. This work sets the stage for parallel studies of consumer-mediated microbiome dispersal and assembly in other sessile, habitat-forming species.


Sign in / Sign up

Export Citation Format

Share Document