high magnesium calcite
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 85 (4) ◽  
pp. 225-244
Author(s):  
Carles Roqué Pau ◽  
Mario Zarroca Hernández ◽  
Rogelio Linares Santiago

This article describes the geomorphological and petrological characteristics of 19 submerged beachrocks located on the north Catalan coast (western Mediterranean Sea). Their length ranges between 8 and 1039 m, their width between 1.5 and 86.5 m and their thickness between 0.4 and 3.25 m. They are siliciclastic beachrocks consisting of well-rounded gravels with a very coarse sand matrix, and they have a low proportion of bioclasts (<1%). Cementation occurred in the swash zone and adjacent foreshore due to the precipitation of high magnesium calcite. From absolute dates (14C and optically stimulated luminescence) and anthropic artifacts, three phases of formation attributable to the Late Holocene were identified. Phase I corresponds to the warm and humid Roman Period and was recorded at a level below -3.75 m mean sea level (MSL). Phase II corresponds to the warm and arid Medieval Climate Anomaly and was recorded at +0.25 m to -2.5 m MSL. Phase III corresponds to the Little Ice Age and Industrial Period and was recorded at levels ranging from +0.5 m to -3.0 m MSL. Good temporal correspondence between the chronology of the cementation phases and warm and/or dry palaeoclimatic conditions can be established.


2021 ◽  
pp. 1-12
Author(s):  
Xingxing Wang ◽  
Xue Zhu ◽  
Luting Zhang ◽  
Chengfeng Yu ◽  
Bin Lian

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongjie Li ◽  
Chang-Yu Sun ◽  
Yihang Fang ◽  
Caitlin M. Carlson ◽  
Huifang Xu ◽  
...  

AbstractAlthough calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO3)2] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior. Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth. In situ nanoindentation demonstrates that the biomineral layer significantly hardens the exoskeleton. Increased survival of ant workers with biomineralized exoskeletons during aggressive encounters with other ants and reduced infection by entomopathogenic fungi demonstrate the protective role of the biomineral layer. The discovery of biogenic high-magnesium calcite in the relatively well-studied leaf-cutting ants suggests that calcareous biominerals enriched in magnesium may be more common in metazoans than previously recognized.


Palaios ◽  
2020 ◽  
Vol 35 (10) ◽  
pp. 421-431
Author(s):  
LAURA J. COTTON ◽  
DAVID EVANS ◽  
SIMON J. BEAVINGTON-PENNEY

ABSTRACT Nummulites were one of the most abundant and widespread larger benthic foraminifera of the Paleogene, however, confusion remains within the literature as to whether their original test mineralogy was high or low magnesium calcite. As the number of studies using proxies based on Nummulites and related nummulitid geochemistry increase, it is essential to have a firm understanding of test composition to assess preservation within potential samples, and to interpret results. Here we employ a combination of X-ray diffraction, Fourier transform infra-red spectroscopy, and laser ablation ICPMS to determine magnesium content across exceptionally preserved and poorly preserved fossil material as well as modern examples of nummulitids—showing conclusively a primary intermediate to high magnesium calcite composition. This composition appears to be closely related to fluctuating ocean chemistry through the Paleogene. Using these results as an indicator of preservation we examine variation in trace element data across a suite of samples, and introduce the concept of the preservagram, a method of quickly visualizing different styles of carbonate diagenesis. Understanding the original mineralogy of nummulitids and, therefore, the extent to which specimens have been diagenetically altered, is essential as larger foraminifera are increasingly used in geochemical studies.


2020 ◽  
Vol 50 (3) ◽  
pp. 279-290
Author(s):  
M. Angelica Zamora-Duran ◽  
Richard B. Aronson ◽  
James J. Leichter ◽  
Jennifer A. Flannery ◽  
Julie N. Richey ◽  
...  

ABSTRACT The marginal marine environments of the eastern tropical Pacific (ETP) serve as an ideal natural laboratory to study how oceanographic and climatic variability influence coral-reef ecosystems. Reefs along the Pacific coast of Panamá span a natural gradient of nutrients, pH, and temperature as a result of stronger seasonal upwelling in the Gulf of Panamá relative to the Gulf of Chiriquí. The ecosystems are not only influenced by spatial and seasonal variations in oceanography but are affected by the climatic variability of the El Niño-Southern Oscillation (ENSO). Foraminifera can be robust indicators of ecosystem condition because the composition of their assemblages and the geochemistry of their tests can change rapidly in response to environmental variability. We studied benthic foraminifera in sediment samples collected from 3 m below mean sea level in the Gulf of Panamá and the Gulf of Chiriquí. Temperature loggers deployed from 2016 to 2019 showed that average temperatures were lower and more variable in the Gulf of Panamá due to seasonal upwelling. All sites in both gulfs were dominated by heterotrophic foraminifera, which was likely the result of nutrient enrichment due to upwelling, combined with ENSO effects. However, the Gulf of Chiriquí was characterized by higher abundances of symbiont-bearing foraminifera than the Gulf of Panamá. The orders Miliolida and Rotaliida dominated the foraminiferal assemblages in both gulfs, with Quinqueloculina and Rosalina being the most abundant genera in the two orders, respectively. Miliolids were less abundant in the Gulf of Panamá than in the Gulf of Chiriquí, whereas rotaliid densities were not significantly different between the two gulfs. Lower pH in the Gulf of Panamá as a result of upwelling may have contributed to the lower abundance of miliolids, which secrete tests of high-magnesium calcite. Geochemical analysis of tests of the symbiont-bearing miliolid Sorites marginalis revealed that foraminiferal Mg/Ca ratios were lower in the Gulf of Panamá than in the Gulf of Chiriquí. The offset in foraminiferal Mg/Ca is consistent with the lower mean annual temperature observed in the Gulf of Panamá due to stronger seasonal upwelling. Because the geochemistry and assemblages of foraminifera reflect differences in environmental conditions, they could potentially be used in tandem with coral proxies to reconstruct past environmental change and project the future of coral-reef systems within the ETP.


2020 ◽  
Author(s):  
Hongjie Li ◽  
Chang-Yu Sun ◽  
Yihang Fang ◽  
Caitlin M. Carlson ◽  
Huifang Xu ◽  
...  

AbstractAlthough calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO3)2] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior. Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth. In situ nanoindentation demonstrates that the biomineral layer significantly hardens the exoskeleton. Increased survival of ant workers with biomineralized exoskeletons during aggressive encounters with other ants and reduced infection by entomopathogenic fungi demonstrate the protective role of the biomineral layer. The discovery of biosynthesized high-magnesium calcite in the relatively well-studied leaf-cutting ants suggests that calcareous biominerals enriched in magnesium may be more common in metazoans than previously recognized.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 299
Author(s):  
Huiwen Huang ◽  
Xudong Wang ◽  
Shanggui Gong ◽  
Nicola Krake ◽  
Daniel Birgel ◽  
...  

High-magnesium calcite (HMC) and aragonite are metastable minerals, which tend to convert into low-magnesium calcite (LMC) and dolomite. During this process, primary compositions are frequently altered, resulting in the loss of information regarding the formation environment and the nature of fluids from which the minerals precipitated. Petrological characteristics have been used to recognize primary LMC, however, neither the element distribution within primary LMC nor the effect of diagenetic alteration on element composition have been studied in detail. Here, two mostly authigenic carbonate lithologies from the northern Gulf of Mexico dominated by primary LMC were investigated to distinguish element compositions of primary LMC from LMC resulting from diagenetic alteration. Primary LMC reveals similar or lower Sr/Ca ratios than primary HMC. The lack of covariation between Sr/Ca ratios and Mg/Ca ratios in the studied primary LMCs are unlike compositions observed for LMC resulting from diagenetic alteration. The Sr/Mn ratios and Mn contents of the primary LMCs are negatively correlated, similar to secondary, diagenetic LMC. Element mapping for Sr and Mg in the primary LMC lithologies revealed no evidence of conversion from aragonite or HMC to LMC, and a homogenous distribution of Mn is in accordance with the absence of late diagenetic alteration. Our results confirm that Sr/Ca ratios, Mg/Ca ratios, and element systematics of primary LMC are indeed distinguishable from diagenetically altered carbonates, enabling the utilization of element geochemistry in recognizing primary signals in carbonate archives.


Sign in / Sign up

Export Citation Format

Share Document