mammalian cell toxicity
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 2)

H-INDEX

13
(FIVE YEARS 1)

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 883
Author(s):  
Justin Reinicke ◽  
Ryuju Kitatani ◽  
Shadi Sedghi Masoud ◽  
Kelly Kawabata Galbraith ◽  
Wesley Yoshida ◽  
...  

Cubozoan nematocyst venoms contain known cytolytic and hemolytic proteins, but small molecule components have not been previously reported from cubozoan venom. We screened nematocyst extracts of Alatina alata and Chironex yamaguchii by LC-MS for the presence of small molecule metabolites. Three isomeric compounds, cnidarins 4A (1), 4B (2), and 4C (3), were isolated from venom extracts and characterized by NMR and MS, which revealed their planar structure as cyclic γ-linked tetraglutamic acids. The full configurational assignments were established by syntheses of all six possible stereoisomers, comparison of spectral data and optical rotations, and stereochemical analysis of derivatized degradation products. Compounds 1–3 were subsequently detected by LC-MS in tissues of eight other cnidarian species. The most abundant of these compounds, cnidarin 4A (1), showed no mammalian cell toxicity or hemolytic activity, which may suggest a role for these cyclic tetraglutamates in nematocyst discharge.


2020 ◽  
Vol 49 (22) ◽  
pp. 7341-7354 ◽  
Author(s):  
Megan E. Herdman ◽  
Melissa V. Werrett ◽  
Rebekah N. Duffin ◽  
Liam J. Stephens ◽  
Rajini Brammananth ◽  
...  

A series of diphenyl mono-phosphinato bismuth complexes were synthesised to study the effect of ligand choice on antibacterial activity, mammalian cell toxicity, and their behaviour in Bi-nanocellulose composites for use as antibacterial materials.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Zeinab Mamouei ◽  
Abdullah Alqarihi ◽  
Shakti Singh ◽  
Shuying Xu ◽  
Michael K. Mansour ◽  
...  

ABSTRACT Invasive fungal infections due to Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans constitute a substantial threat to hospitalized immunocompromised patients. Further, the presence of drug-recalcitrant biofilms on medical devices and emergence of drug-resistant fungi, such as Candida auris, introduce treatment challenges with current antifungal drugs. Worse, currently there is no approved drug capable of obviating preformed biofilms, which increase the chance of infection relapses. Here, we screened a small-molecule New Prestwick Chemical Library, consisting of 1,200 FDA-approved off-patent drugs against C. albicans, C. auris, and A. fumigatus, to identify those that inhibit growth of all three pathogens. Inhibitors were further prioritized for their potency against other fungal pathogens and their ability to kill preformed biofilms. Our studies identified the bis-biguanide alexidine dihydrochloride (AXD) as a drug with the highest antifungal and antibiofilm activity against a diverse range of fungal pathogens. Finally, AXD significantly potentiated the efficacy of fluconazole against biofilms, displayed low mammalian cell toxicity, and eradicated biofilms growing in mouse central venous catheters in vivo, highlighting its potential as a pan-antifungal drug. IMPORTANCE The prevalence of fungal infections has seen a rise in the past decades due to advances in modern medicine leading to an expanding population of device-associated and immunocompromised patients. Furthermore, the spectrum of pathogenic fungi has changed, with the emergence of multidrug-resistant strains such as C. auris. High mortality related to fungal infections points to major limitations of current antifungal therapy and an unmet need for new antifungal drugs. We screened a library of repurposed FDA-approved inhibitors to identify compounds with activities against a diverse range of fungi in varied phases of growth. The assays identified alexidine dihydrochloride (AXD) to have pronounced antifungal activity, including against preformed biofilms, at concentrations lower than mammalian cell toxicity. AXD potentiated the activity of fluconazole and amphotericin B against Candida biofilms in vitro and prevented biofilm growth in vivo. Thus, AXD has the potential to be developed as a pan-antifungal, antibiofilm drug.


2018 ◽  
Author(s):  
Zeinab Mamouei ◽  
Abdullah Alqarihi ◽  
Shakti Singh ◽  
Shuying Xu ◽  
Michael K. Mansour ◽  
...  

AbstractInvasive fungal infections due to Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, constitute a substantial threat to hospitalized, immunocompromised patients. Further, the presence of drug-recalcitrant biofilms on medical devices, and emergence of drug-resistant fungi such as Candida auris, introduce treatment challenges with current antifungal drugs. Worse, currently there is no approved drug capable of obviating preformed biofilms which increases the chance of infection relapses. Here, we screened a small molecule Prestwick Chemical Library, consisting of 1200 FDA approved off-patent drugs, against C. albicans, C. auris and A. fumigatus, to identify those that inhibit growth of all three pathogens. Inhibitors were further prioritized for their potency against other fungal pathogens, and their ability to kill preformed biofilms. Our studies identified the bis-biguanide Alexidine dihydrochloride (AXD), as a drug with the highest antifungal and anti-biofilm activity against a diverse range of fungal pathogens. Finally, AXD significantly potentiated the efficacy of fluconazole against biofilms, displayed low mammalian cell toxicity, and eradicated biofilms growing in mice central venous catheters in vivo, highlighting its potential as a pan-antifungal drug.ImportanceThe prevalence of fungal infections has seen a rise in the past decades due to advances in modern medicine leading to an expanding population of device-associated and immunocompromised patients. Furthermore, the spectrum of pathogenic fungi has changed, with the emergence of multi-drug resistant strains such as C. auris. High mortality related to fungal infections point to major limitations of current antifungal therapy, and an unmet need for new antifungal drugs. We screened a library of repurposed FDA approved inhibitors to identify compounds with activities against a diverse range of fungi, in varied phases of growth. The assays identified Alexidine dihydrochloride (AXD) to have pronounced antifungal activity including against preformed biofilms, at concentrations lower than mammalian cell toxicity. AXD potentiated the activity of fluconazole and amphotericin B against Candida biofilms in vitro, and prevented biofilm growth in vivo. Thus AXD has the potential to be developed as a pan-antifungal, anti-biofilm drug.


2018 ◽  
Author(s):  
Amarjit Luniwal

The rise in organisms resistant to existing drugs has added urgency to the search for new antimicrobial agents. Aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes a critical step in an essential microbial pathway that is absent in mammals. Our laboratory is using fragment library screening to identify efficient and selective ASADH inhibitors. These preliminary agents are then tested to identify compounds with desired antimicrobial properties for further refinement. Towards this end, we have established a microplate-based, dual assay approach using a single reagent to evaluate antibiotic activity and mammalian cell toxicity during early stage screening. The bacterial assay utilizes non-pathogenic bacteria to allow efficacy testing without a dedicated microbial laboratory. Toxicity assays are performed with a panel of mammalian cells derived from representative susceptible tissues. These assays can be adapted to target other microbial systems, such as fungi and biofilms, and additional mammalian cell lines can be added as needed. Application of this screening approach to antibiotic standards demonstrates the ability of these assays to identify bacterial selectivity and potential toxicity issues. Tests with ASADH inhibitors show some compounds with antibiotic activity, but as expected most of these early agents display higher than desired mammalian cell toxicity.


2016 ◽  
Vol 52 (25) ◽  
pp. 4644-4647 ◽  
Author(s):  
D. S. S. M. Uppu ◽  
M. Bhowmik ◽  
S. Samaddar ◽  
J. Haldar

The influence of cyclization and unsaturation on the hydrophobic side chains of cationic-amphiphilic polymers towards antibacterial activity and mammalian cell toxicity is reported.


2012 ◽  
Vol 17 (5) ◽  
pp. 673-682 ◽  
Author(s):  
Jeffrey G. Sarver ◽  
Jill A. Trendel ◽  
Nicole R. Bearss ◽  
Lin Wang ◽  
Amarjit Luniwal ◽  
...  

The rise in organisms resistant to existing drugs has added urgency to the search for new antimicrobial agents. Aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes a critical step in an essential microbial pathway that is absent in mammals. Our laboratory is using fragment library screening to identify efficient and selective ASADH inhibitors. These preliminary agents are then tested to identify compounds with desired antimicrobial properties for further refinement. Toward this end, we have established a microplate-based, dual-assay approach using a single reagent to evaluate antibiotic activity and mammalian cell toxicity during early stage development. The bacterial assay uses nonpathogenic bacteria to allow efficacy testing without a dedicated microbial laboratory. Toxicity assays are performed with a panel of mammalian cells derived from representative susceptible tissues. These assays can be adapted to target other microbial systems, such as fungi and biofilms, and additional mammalian cell lines can be added as needed. Application of this screening approach to antibiotic standards demonstrates the ability of these assays to identify bacterial selectivity and potential toxicity issues. Tests with selected agents from the ASADH inhibitor fragment library show some compounds with antibiotic activity, but as expected, most of these early agents display higher than desired mammalian cell toxicity.


Sign in / Sign up

Export Citation Format

Share Document