amphiphilic polymers
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 54)

H-INDEX

41
(FIVE YEARS 6)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 340
Author(s):  
Marina I. Voronova ◽  
Darya L. Gurina ◽  
Oleg V. Surov

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polycaprolactone (PHBV/PCL) polymer mixtures reinforced by cellulose nanocrystals (CNCs) have been obtained. To improve the CNC compatibility with the hydrophobic PHBV/PCL matrix, the CNC surface was modified by amphiphilic polymers, i.e., polyvinylpyrrolidone (PVP) and polyacrylamide (PAM). The polymer composites were characterized by FTIR, DSC, TG, XRD, microscopy, BET surface area, and tensile testing. The morphological, sorption, thermal, and mechanical properties of the obtained composites have been studied. It was found out that with an increase in the CNC content in the composites, the porosity of the films increased, which was reflected in an increase in their specific surface areas and water sorption. An analysis of the IR spectra confirms that hydrogen bonds can be formed between the CNC hydroxyl- and the –CO– groups of PCL and PHBV. The thermal decomposition of CNC in the PHBV/PCL/CNC composites starts at a much higher temperature than the decomposition of pure CNC. It was revealed that CNCs can either induce crystallization and the polymer crystallite growth or act as a compatibilizer of a mixture of the polymers causing their amorphization. The CNC addition significantly reduces the elongation and strength of the composites, but changes Young’s modulus insignificantly, i.e., the mechanical properties of the composites are retained under conditions of small linear deformations. A molecular-dynamics simulation of several systems, starting from simplest binary (solvent-polymer) and finishing with multi-component (CNC—polymer mixture—solvent) systems, has been made. It is concluded that the surface modification of CNCs with amphiphilic polymers makes it possible to obtain the CNC composites with hydrophobic polymer matrices.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Anna J. Higgins ◽  
Alex J. Flynn ◽  
Anaïs Marconnet ◽  
Laura J. Musgrove ◽  
Vincent L. G. Postis ◽  
...  

2022 ◽  
Author(s):  
Wanbing Li ◽  
Haibo Zhang ◽  
Zhaolan Zhai ◽  
Xujuan Huang ◽  
Shibin Shang ◽  
...  

Novel ‘bola’ rosin-based photo-responsive amphiphilic polymers PMPn (n=17, 34, 69) were synthesized using polyethyleneglycol (PEG) as a double hydrophilic head and N-azobenzenemaleimidepimaric (AZOMPA) as a hydrophobic tail. The relatively fixed...


2021 ◽  
Vol 596 ◽  
pp. 324-331
Author(s):  
Pablo G. Argudo ◽  
Nian Zhang ◽  
Hui Chen ◽  
Gustavo de Miguel ◽  
María T. Martín-Romero ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1893
Author(s):  
Vladislav Istratov ◽  
Valerii Vasnev ◽  
Galy Markova

In this study, new biodegradable and biocompatible amphiphilic polymers were obtained by modifying the peripheral hydroxyl groups of branched polyethers and polyesters with organosilicon substituents. The structures of the synthesized polymers were confirmed by NMR and GPC. Organosilicon moieties of the polymers were formed by silatranes and trimethylsilyl blocks and displayed hydrophilic and hydrophobic properties, respectively. The effect of the ratio of hydrophilic to hydrophobic organosilicon structures on the surface activity and biological activity of macromolecules was studied, together with the effect on these activities of the macromolecules’ molecular weight and chemical structure. In particular, the critical micelle concentrations were determined, the effect of the structure of the polymers on their wetting with aqueous solutions on glass and parafilm was described, and the aggregation stability of emulsions was studied. Finally, the effect of the polymer structures on their antifungal activity and seed germination stimulation was examined.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1007
Author(s):  
Valeriya V. Kardumyan ◽  
Nadejda A. Aksenova ◽  
Victoria A. Timofeeva ◽  
Alexey V. Krivandin ◽  
Olga V. Shatalova ◽  
...  

In this work, we studied the photocatalytic activity of photosensitizers (PSs) of various natures solubilized with polyvinylpyrrolidone (PVP) and ternary block copolymer ethylene and propylene oxide Pluronic F127 (F127) in a model reaction of tryptophan photo-oxidation in water in the presence of chitosan (CT). Water-soluble compounds (dimegin and trisodium salt of chlorin e6 (Ce6)) and hydrophobic porphyrins (tetraphenylporphyrin (TPP) and its fluorine derivative (TPPF20)) were used as PSs. It was shown that the use of chitosan (Mw ~100 kDa) makes it possible to obtain a system whose activity is comparable to that of the photosensitizer-amphiphilic polymer systems. Thus, the previously observed drop in the photosensitizing activity of PS in the presence of a polysaccharide and amphiphilic polymers (AP) was absent in this case. At the same time, chitosan had practically no inhibitory effect on hydrophobic porphyrins solubilized by Pluronic F127.


Author(s):  
Min Nie ◽  
Morteza Azizi ◽  
Ivan Keresztes ◽  
Arkaye Kierulf ◽  
Alireza Abbaspourrad

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 460
Author(s):  
Daisuke Kugimoto ◽  
Aoi Taniguchi ◽  
Masaki Kinoshita ◽  
Isamu Akiba

Associating behavior of star-like amphiphilic polymers consisting of two or three poly(ethylene oxide) (PEO) chains and one stearyl chain (C18) was investigated. Although the aggregation number (Nagg) of linear analogue of amphiphilic polymers monotonically decreased with increasing number-average molecular weight of PEO (Mn,PEO), the Nagg of micelles of star-like amphiphilic polymers with Mn,PEO = 550 g/mol was smaller than that with Mn,PEO = 750 g/mol, whereas that with Mn,PEO ≥ 750 g/mol showed general Mn,PEO dependence. Small-angle X-ray scattering analyses revealed that the occupied area of one PEO chain on the interface between hydrophobic core and corona layer in the micelles of star-like polymers was much narrower than that in the linear amphiphilic polymers. This result indica ted the PEO chains of star-like polymers partially took unfavorable conformation near the core–corona interface in polymer micelles. The effect of local conformation of PEO chains near the interface on the associating behavior became significant as Mn,PEO decreased. Therefore, in polymer micelles of star-like amphiphilic polymers containing PEO with Mn,PEO = 550 g/mol, the enlargement of occupied area of PEO on the core–corona interface should be caused to avoid the formation of unfavorable conformations of partial PEO chains, resulting in a decrease in Naggs.


Sign in / Sign up

Export Citation Format

Share Document