cell selectivity
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 30)

H-INDEX

34
(FIVE YEARS 4)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Navaneethan Radhakrishnan ◽  
Sunil C. Kaul ◽  
Renu Wadhwa ◽  
Durai Sundar

Development of drugs that are selectively toxic to cancer cells and safe to normal cells is crucial in cancer treatment. Evaluation of membrane permeability is a key metric for successful drug development. In this study, we have used in silico molecular models of lipid bilayers to explore the effect of phosphatidylserine (PS) exposure in cancer cells on membrane permeation of natural compounds Withaferin A (Wi-A), Withanone (Wi-N), Caffeic Acid Phenethyl Ester (CAPE) and Artepillin C (ARC). Molecular dynamics simulations were performed to compute permeability coefficients. The results indicated that the exposure of PS in cancer cell membranes facilitated the permeation of Wi-A, Wi-N and CAPE through a cancer cell membrane when compared to a normal cell membrane. In the case of ARC, PS exposure did not have a notable influence on its permeability coefficient. The presented data demonstrated the potential of PS exposure-based models for studying cancer cell selectivity of drugs.


2021 ◽  
Author(s):  
Chelladurai Ajish ◽  
Sungtae Yang ◽  
S. Dinesh Kumar ◽  
Eun Young Kim ◽  
Hye Jung Min ◽  
...  

Abstract Hybridizing two known antimicrobial peptides (AMPs) is a simple and effective strategy for designing antimicrobial agents with enhanced cell selectivity against bacterial cells. Here, we generated a hybrid peptide Lf-KR in which LfcinB6 and KR-12-a4 were linked with a Pro hinge to obtain a novel AMP with potent antimicrobial, anti-inflammatory, and anti-biofilm activities. Lf-KR exerted superior cell selectivity for bacterial cells over sheep red blood cells. Lf-KR showed broad-spectrum antimicrobial activities (MIC: 4–8 mM) against tested 12 bacterial strains and retained its antimicrobial activity in the presence of salts at physiological concentrations. Membrane depolarization and dye leakage assays showed that the enhanced antimicrobial activity of Lf-KR was due to increased permeabilization and depolarization of microbial membranes. Lf-KR significantly inhibited the expression and production of pro-inflammatory cytokines (NO and TNF-a) in LPS-stimulated mouse macrophage RAW264.7 cells. In addition, Lf-KR showed a powerful eradication effect on preformed multidrug-resistant Pseudomonas aeruginosa (MDRPA) biofilms. We confirmed using confocal laser scanning microscopy that a large portion of the preformed MDRPA biofilm structure was perturbed by the addition of Lf-KR. Collectively, our results suggest that Lf-KR can be an antimicrobial, anti-inflammatory, and anti-biofilm candidate as a pharmaceutical agent.


2021 ◽  
Author(s):  
Naoki Miyamoto ◽  
Young-Hyun Go ◽  
Larissa Miasiro Ciaramicoli ◽  
Haw-Young Kwon ◽  
Heon Seok Kim ◽  
...  

CDy1 is a powerful tool to distingusih embryonic stem cells for reprogramming study and regeneration medicine. However, the stem cell selectivity mechanism of CDy1 has not been fully understood. Here,...


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 921
Author(s):  
Seong-Cheol Park ◽  
Heabin Kim ◽  
Jin-Young Kim ◽  
Hyeonseok Kim ◽  
Gang-Won Cheong ◽  
...  

Several antimicrobial peptides (AMPs) have been discovered, developed, and purified from natural sources and peptide engineering; however, the clinical applications of these AMPs are limited owing to their lack of abundance and side effects related to cytotoxicity, immunogenicity, and hemolytic activity. Accordingly, to improve cell selectivity for pseudin-2, an AMP from Pseudis paradoxa skin, in mammalian cells and pathogenic fungi, the sequence of pseudin-2 was modified by alanine or lysine at each position of two amino acids within the leucine-zipper motif. Alanine-substituted variants were highly selective toward fungi over HaCaT and erythrocytes and maintained their antifungal activities and mode of action (membranolysis). However, the antifungal activities of lysine-substituted peptides were reduced, and the compound could penetrate into fungal cells, followed by induction of mitochondrial reactive oxygen species and cell death. In vivo antifungal assays of analogous peptide showed excellent antifungal efficiency in a Candida tropicalis skin infection mouse model. Our results demonstrated the usefulness of selective amino acid substitution in the repeated sequence of the leucine-zipper motif for the design of AMPs with potent antimicrobial activities and low toxicity.


2020 ◽  
Author(s):  
Sarfuddin Azmi ◽  
Neeraj Kumar Verma ◽  
Jitendra Kumar Tripathi ◽  
Saurabh Srivastava ◽  
Devesh Pratap Verma ◽  
...  
Keyword(s):  

ChemMedChem ◽  
2020 ◽  
Vol 15 (24) ◽  
pp. 2544-2561
Author(s):  
Nicki Frederiksen ◽  
Paul R. Hansen ◽  
Dorota Zabicka ◽  
Magdalena Tomczak ◽  
Malgorzata Urbas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document