glyoxal oxidase
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 4)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Author(s):  
David Ribeaucourt ◽  
Safwan Saker ◽  
David Navarro ◽  
Bastien Bissaro ◽  
Elodie Drula ◽  
...  

Copper Radical Alcohol Oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens are attractive for the production of fragrant fatty aldehydes. To investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time-course analyses of the secretomes of three Colletotrichum species (C. graminicola, C. tabacum and C. destructivum) using proteomics. The addition of a copper-manganese-ethanol mixture to Colletotrichum cultures unexpectedly induced the secretion of up to 400 proteins, 29-52% of which were carbohydrate-active enzymes (CAZymes), including a wide diversity of copper-containing oxidoreductases from the auxiliary activities (AA) class (AA1, AA3, AA5, AA7, AA9, AA11-AA13, AA16). Under these specific conditions, while a CRO-glyoxal oxidase from the AA5_1 subfamily was among the most abundantly secreted proteins, the targeted AA5_2 CRO-AlcOx were secreted at lower levels, suggesting heterologous expression as a more promising strategy for CRO-AlcOx production and utilization. C. tabacum and C. destructivum CRO-AlcOx were expressed in Pichia pastoris and their preference toward both aromatic and aliphatic primary alcohols was assessed. The CRO-AlcOx from C. destructivum was further investigated in applied settings, revealing a full conversion of C6 and C8 alcohols into their corresponding fragrant aldehydes.


2021 ◽  
pp. 107845
Author(s):  
Lena Wohlschlager ◽  
Daniel Kracher ◽  
Stefan Scheiblbrandner ◽  
Florian Csarman ◽  
Roland Ludwig

2021 ◽  
Vol 12 ◽  
Author(s):  
Carolyn A. Zeiner ◽  
Samuel O. Purvine ◽  
Erika Zink ◽  
Si Wu ◽  
Ljiljana Paša-Tolić ◽  
...  

Manganese (Mn) oxides are among the strongest oxidants and sorbents in the environment, and Mn(II) oxidation to Mn(III/IV) (hydr)oxides includes both abiotic and microbially-mediated processes. While white-rot Basidiomycete fungi oxidize Mn(II) using laccases and manganese peroxidases in association with lignocellulose degradation, the mechanisms by which filamentous Ascomycete fungi oxidize Mn(II) and a physiological role for Mn(II) oxidation in these organisms remain poorly understood. Here we use a combination of chemical and in-gel assays and bulk mass spectrometry to demonstrate secretome-based Mn(II) oxidation in three phylogenetically diverse Ascomycetes that is mechanistically distinct from hyphal-associated Mn(II) oxidation on solid substrates. We show that Mn(II) oxidative capacity of these fungi is dictated by species-specific secreted enzymes and varies with secretome age, and we reveal the presence of both Cu-based and FAD-based Mn(II) oxidation mechanisms in all 3 species, demonstrating mechanistic redundancy. Specifically, we identify candidate Mn(II)-oxidizing enzymes as tyrosinase and glyoxal oxidase in Stagonospora sp. SRC1lsM3a, bilirubin oxidase in Stagonospora sp. and Paraconiothyrium sporulosum AP3s5-JAC2a, and GMC oxidoreductase in all 3 species, including Pyrenochaeta sp. DS3sAY3a. The diversity of the candidate Mn(II)-oxidizing enzymes identified in this study suggests that the ability of fungal secretomes to oxidize Mn(II) may be more widespread than previously thought.


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 476 ◽  
Author(s):  
Marco Kadowaki ◽  
Mariana Godoy ◽  
Patricia Kumagai ◽  
Antonio Costa-Filho ◽  
Andrew Mort ◽  
...  

Myceliophthora thermophyla is a thermophilic industrially relevant fungus that secretes an assortment of hydrolytic and oxidative enzymes for lignocellulose degradation. Among them is glyoxal oxidase (MtGLOx), an extracellular oxidoreductase that oxidizes several aldehydes and α-hydroxy carbonyl substrates coupled to the reduction of O2 to H2O2. This copper metalloprotein belongs to a class of enzymes called radical copper oxidases (CRO) and to the “auxiliary activities” subfamily AA5_1 that is based on the Carbohydrate-Active enZYmes (CAZy) database. Only a few members of this family have been characterized to date. Here, we report the recombinant production, characterization, and structure-function analysis of MtGLOx. Electron Paramagnetic Resonance (EPR) spectroscopy confirmed MtGLOx to be a radical-coupled copper complex and small angle X-ray scattering (SAXS) revealed an extended spatial arrangement of the catalytic and four N-terminal WSC domains. Furthermore, we demonstrate that methylglyoxal and 5-hydroxymethylfurfural (HMF), a fermentation inhibitor, are substrates for the enzyme.


2016 ◽  
Vol 82 (16) ◽  
pp. 4867-4875 ◽  
Author(s):  
Marianne Daou ◽  
François Piumi ◽  
Daniel Cullen ◽  
Eric Record ◽  
Craig B. Faulds

ABSTRACTThe genome of the white rot fungusPycnoporus cinnabarinusincludes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated fromPhanerochaete chrysosporium. The glyoxal oxidase ofP. chrysosporiumis physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases ofP. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced inAspergillus nigerstrain D15#26 (pyrGnegative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein forPciGLOX1 andPciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The twoP. cinnabarinusenzymes generally exhibited similar substrate preferences, butPciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde.IMPORTANCEThis study addresses the poorly understood role of how fungal peroxidases obtain anin situsupply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these enzymes utilize fungal metabolites as the substrates. Two glyoxal oxidases have been isolated and characterized to date, and the differentiation of the substrate specificity of the two enzymes produced byPycnoporus cinnabarinusillustrates the alternative mechanisms existing in a single fungus, together with the utilization of these enzymes to prepare platform chemicals for industry.


2015 ◽  
Vol 210 (3) ◽  
pp. 997-1010 ◽  
Author(s):  
Xiu-Shi Song ◽  
Shu Xing ◽  
He-Ping Li ◽  
Jing-Bo Zhang ◽  
Bo Qu ◽  
...  

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
DeLu Yin ◽  
Saioa Urresti ◽  
Mickael Lafond ◽  
Esther M. Johnston ◽  
Fatemeh Derikvand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document