fatty aldehydes
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 16)

H-INDEX

20
(FIVE YEARS 2)

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3517
Author(s):  
Chenchen Xu ◽  
Shou Zhang ◽  
Baozhong Sun ◽  
Peng Xie ◽  
Xiaochang Liu ◽  
...  

The purpose of this study was to evaluate the effects of dietary supplementation with microalgae (Schizochytrium sp.) containing docosahexaenoic acid (DHA) on the antioxidant enzyme activity, physicochemical quality, fatty acid composition and volatile compounds of beef meat. Eighteen male Qaidamford cattle were randomly allocated into three treatments (n = 6): no micro-algae supplementation (Control group, C), 100 g microalgae supplementation per bull per day (FD1), and 200 g microalgae supplementation per bull per day (FD2), and fed for 49 days before slaughter. The results showed that, compared with the C group, the addition of DHA-rich microalgae to the diet could significantly increase the total antioxidant capacity (T-AOC) in meat. In the FD2 group, it was found that the concentration of glutathione peroxidase (GSH-Px) was significantly higher than that of the control group (p < 0.05). DHA-rich microalgae supplementation increased polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA; C20:5 n-6), DHA, EPA + DHA, and n-3 PUFA and reduced n-6:n-3 fatty acid ratio. Twenty-four volatile compounds identified in beef were mainly aldehydes, alcohols and ketones from the fingerprints. The contents of short-chain fatty aldehydes, 1-octen-3-ol and 2-pentylfuran, were higher in the FD2 group than in the other two groups. The microalgae diet improved the sensory attribute score of beef. The results demonstrated that dietary supplementation of DHA-rich microalgae improved the antioxidant status, increased the deposition of DHA and enhanced the characteristic flavor of beef.


Author(s):  
In Jung Kim ◽  
Yannik Brack ◽  
Thomas Bayer ◽  
Uwe T. Bornscheuer

Abstractα-Dioxygenases (α-DOXs) are known as plant enzymes involved in the α-oxidation of fatty acids through which fatty aldehydes, with a high commercial value as flavor and fragrance compounds, are synthesized as products. Currently, little is known about α-DOXs from non-plant organisms. The phylogenic analysis reported here identified a substantial number of α-DOX enzymes across various taxa. Here, we report the functional characterization and Escherichia coli whole-cell application of two novel α-DOXs identified from cyanobacteria: CalDOX from Calothrix parietina and LepDOX from Leptolyngbya sp. The catalytic behavior of the recombinantly expressed CalDOX and LepDOX revealed that they are heme-dependent like plant α-DOXs but exhibit activities toward medium carbon fatty acids ranging from C10 to C14 unlike plant α-DOXs. The in-depth molecular investigation of cyanobacterial α-DOXs and their application in an E. coli whole system employed in this study is useful not only for the understanding of the molecular function of α-DOXs, but also for their industrial utilization in fatty aldehyde biosynthesis.Key points• Two novel α-dioxygenases from Cyanobacteria are reported• Both enzymes prefer medium-chain fatty acids• Both enzymes are useful for fatty aldehyde biosynthesis Graphical abstract


Author(s):  
David Ribeaucourt ◽  
Safwan Saker ◽  
David Navarro ◽  
Bastien Bissaro ◽  
Elodie Drula ◽  
...  

Copper Radical Alcohol Oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens are attractive for the production of fragrant fatty aldehydes. With the initial objective to investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time-course analyses of the secretomes of three Colletotrichum species ( C. graminicola , C. tabacum and C. destructivum) using proteomics. The addition of a copper-manganese-ethanol mixture in absence of any plant-biomass mimicking compounds to Colletotrichum cultures unexpectedly induced the secretion of up to 400 proteins, 29-52% of which were carbohydrate-active enzymes (CAZymes), including a wide diversity of copper-containing oxidoreductases from the auxiliary activities (AA) class (AA1, AA3, AA5, AA7, AA9, AA11-AA13, AA16). Under these specific conditions, while a CRO-glyoxal oxidase from the AA5_1 subfamily was among the most abundantly secreted proteins, the targeted AA5_2 CRO-AlcOx were secreted at lower levels, suggesting heterologous expression as a more promising strategy for CRO-AlcOx production and utilization. C. tabacum and C. destructivum CRO-AlcOx were thus expressed in Pichia pastoris and their preference toward both aromatic and aliphatic primary alcohols was assessed. The CRO-AlcOx from C. destructivum was further investigated in applied settings, revealing a full conversion of C6 and C8 alcohols into their corresponding fragrant aldehydes. IMPORTANCE In the context of the industrial shift toward greener processes, the biocatalytic production of aldehydes is of utmost interest owing to their importance for their use as flavors and fragrances ingredients. CRO-AlcOx have the potential to become platform enzymes for the oxidation of alcohols to aldehydes. However, the secretion of CRO-AlcOx by natural fungal strains has never been explored, while the use of crude fungal secretomes is an appealing approach for industrial application to alleviate various costs pertaining to biocatalysts production. While investigating this primary objective, the secretomics studies revealed unexpected results showing that under the oxidative-stressful conditions we probed, Colletotrichum species can secrete a broad diversity of copper-containing enzymes (laccases, sugar oxidoreductases, LPMOs) usually assigned to “plant-cell wall degradation”, despite the absence of any plant-biomass mimicking compound, and only little amount of CRO-AlcOx were secreted, pointing out at recombinant expression as the most promising path for their biocatalytic application.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009635
Author(s):  
Lidan Zeng ◽  
Xuesong Li ◽  
Christopher B. Preusch ◽  
Gary J. He ◽  
Ningyi Xu ◽  
...  

The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes.


2021 ◽  
Vol 14 (3) ◽  
pp. 454-460
Author(s):  
Jens Johannsen ◽  
Gayoung Baek ◽  
Georg Fieg ◽  
Thomas Waluga

2021 ◽  
Author(s):  
David Ribeaucourt ◽  
Safwan Saker ◽  
David Navarro ◽  
Bastien Bissaro ◽  
Elodie Drula ◽  
...  

Copper Radical Alcohol Oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens are attractive for the production of fragrant fatty aldehydes. To investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time-course analyses of the secretomes of three Colletotrichum species (C. graminicola, C. tabacum and C. destructivum) using proteomics. The addition of a copper-manganese-ethanol mixture to Colletotrichum cultures unexpectedly induced the secretion of up to 400 proteins, 29-52% of which were carbohydrate-active enzymes (CAZymes), including a wide diversity of copper-containing oxidoreductases from the auxiliary activities (AA) class (AA1, AA3, AA5, AA7, AA9, AA11-AA13, AA16). Under these specific conditions, while a CRO-glyoxal oxidase from the AA5_1 subfamily was among the most abundantly secreted proteins, the targeted AA5_2 CRO-AlcOx were secreted at lower levels, suggesting heterologous expression as a more promising strategy for CRO-AlcOx production and utilization. C. tabacum and C. destructivum CRO-AlcOx were expressed in Pichia pastoris and their preference toward both aromatic and aliphatic primary alcohols was assessed. The CRO-AlcOx from C. destructivum was further investigated in applied settings, revealing a full conversion of C6 and C8 alcohols into their corresponding fragrant aldehydes.


2020 ◽  
Author(s):  
Lidan Zeng ◽  
Xuesong Li ◽  
Christopher B. Preusch ◽  
Gary J. He ◽  
Ningyi Xu ◽  
...  

AbstractThe intracellular level of fatty aldehydes is tightly regulated to minimize the formation of toxic aldehyde adducts of cellular components. Accordingly, deficiency of a fatty aldehyde dehydrogenase FALDH causes the neurologic disorder Sjögren-Larsson syndrome (SLS) in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Based on lipidomic and imaging analysis, we report that the loss of endoplasmic reticulum-, mitochondria- and peroxisomes-associated ALH-4, the C. elegans FALDH ortholog, increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are not viable. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels, and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy for SLS.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1646
Author(s):  
Marija Nazlić ◽  
Dario Kremer ◽  
Renata Jurišić Grubešić ◽  
Barbara Soldo ◽  
Elma Vuko ◽  
...  

Chemical profile and antioxidant activity of the species Veronica saturejoides Vis. ssp. saturejoides (Plantaginaceae)—which is endemic to Croatia, Bosnia and Herzegovina and Montenegro —were investigated. Volatile compounds produced by glandular trichomes (composed of one stalk cell and two elliptically formed head cells according to scanning electron microscope investigation) were isolated from the plants collected in two locations. Additionally, as a part of specialized metabolites, total polyphenols, total tannins, total flavonoids and total phenolic acids were determined spectrophotometrically. In the lipophilic volatile fractions-essential oils, the most abundant compounds identified were hexahydrofarnesyl acetone, caryophyllene oxide and hexadecanoic acid. In total, the class of oxygenated sesquiterpenes and the group of fatty aldehydes, acids and alcoholic compounds dominated in the essential oils. In the hydrophilic volatile fractions-hydrosols, the most abundant compounds identified were trans-p-mentha-1(7),8-dien-2-ol, allo-aromadendrene and (E)-caryophyllene. A group of oxygenated monoterpenes and the sesquiterpene hydrocarbons dominated in the hydrosols. Antioxidant activity of essential oils and hydrosols was tested with two methods: 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC). Essential oils showed higher antioxidant activity than hydrosols and showed similar antioxidant activity to Rosmarinus officinalis essential oil. Obtained results demonstrate that this genus is a potential source of volatiles with antioxidant activity.


2020 ◽  
Author(s):  
Supacha Buttranon ◽  
Pattarawan Intasian ◽  
Nidar Treesukkasem ◽  
Juthamas Jaroensuk ◽  
Somchart Maenpuen ◽  
...  

Abstract Background: Aldehyde-deformylating oxygenase (ADO) is a non-heme di-iron enzyme that catalyzes deformylation of aldehydes to generate alkanes/alkenes. In this study, we report for the first time that under anaerobic or limited oxygen conditions, Prochlorococcus marinus (PmADO) can generate full-length fatty alcohols from fatty aldehydes without eliminating a carbon unit. Results: Unlike the native activity of ADO which requires electrons from the Fd/FNR electron transfer complex, the aldehyde reduction activity of ADO requires only NADPH. Our results demonstrated that yield of alcohol products can be affected by oxygen concentration and type of aldehyde. Under O2-scant conditions (10-15%), yields of octanol and dodecanol were around 40-60% and could be increased up to 80% under strict anaerobic conditions (>0.0004%). Unexpectedly, Fe2+ cofactor is not involved in the aldehyde reductase activity of PmADO because yields of alcohols obtained from holo- and apo-enzymes were similar under anaerobic conditions. The direct hydride transfer activity of PmADO is highly specific to substrates; NADPH not NADH can be used as a reductant to reduce medium-chain fatty aldehydes (C6-C10) with decanal as the most preferred substrate (the highest kcat/Km value with 98% bioconversion yield). Molecular dynamics (MD) simulations was used to identify a binding site of NADPH which is located close to the aldehyde binding site. In the metabolic engineered cells containing PmADO, dual activities of alkane and alcohol production could be detected. Conclusion: The findings reported herein highlight a new activity of PmADO which may be applied as a biocatalyst for industrial synthesis of fatty alcohols in the future.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Yandi Zhang ◽  
Yu Yang ◽  
Guanwang Shen ◽  
Xueqin Mao ◽  
Mengyao Jiao ◽  
...  

Abstract Aldehyde oxidases (AOXs) are a subfamily of cytosolic molybdo-flavoenzymes that play critical roles in the detoxification and degradation of chemicals. Active AOXs, such as AOX1 and AOX2, have been identified and functionally analyzed in insect antennae but are rarely reported in other tissues. This is the first study to isolate and characterize the cDNA that encodes aldehyde oxidase 5 (BmAOX5) in the pheromone gland (PG) of the silkworm, Bombyx mori. The size of BmAOX5 cDNA is 3,741 nucleotides and includes an open reading frame, which encodes a protein of 1,246 amino acid residues. The theoretical molecular weight and isoelectric point of BmAOX5 are approximately 138 kDa and 5.58, respectively. BmAOX5 shares a similar primary structure with BmAOX1 and BmAOX2, containing two [2Fe-2S] redox centers, a FAD-binding domain, and a molybdenum cofactor (MoCo)-binding domain. RT–PCR revealed BmAOX5 to be particularly highly expressed in the PG (including ovipositor) of the female silkworm moth, and the expression was further confirmed by in situ hybridization, AOX activity staining, and anti-BmAOX5 western blotting. Further, BmAOX5 was shown to metabolize aromatic aldehydes, such as benzaldehyde, salicylaldehyde, and vanillic aldehyde, and fatty aldehydes, such as heptaldehyde and propionaldehyde. The maximum reaction rate (Vmax) of benzaldehyde as substrate was 21 mU and Km was 1.745 mmol/liter. These results suggested that BmAOX5 in the PG could metabolize aldehydes in the cytoplasm for detoxification or participate in the degradation of aldehyde pheromone substances and odorant compounds to identify mating partners and locate suitable spawning sites.


Sign in / Sign up

Export Citation Format

Share Document