podiform chromitite
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 139 ◽  
pp. 104443
Author(s):  
Chen Chen ◽  
Christina Yan Wang ◽  
Wei Tan ◽  
Zhuo-Sen Yao

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1287
Author(s):  
Giorgio Garuti ◽  
Evgenii V. Pushkarev ◽  
Irina A. Gottman ◽  
Federica Zaccarini

The mantle tectonite of the Kraka ophiolite contains several chromite deposits. Two of them consisting of high-Cr podiform chromitite—the Bolshoi Bashart located within harzburgite of the upper mantle transition zone and Prospect 33 located in the deep lherzolitic mantle—have been investigated. Both deposits are enveloped in dunite, and were formed by reaction between the mantle protolith and high-Mg, anhydrous magma, enriched in Al2O3, TiO2, and Na2O compared with boninite. The PGE mineralization is very poor (<100 ppb) in both deposits. Laurite (RuS2) is the most common PGM inclusion in chromite, although it is accompanied by erlichmanite (OsS2) and (Ir,Ni) sulfides in Prospect 33. Precipitation of PGM occurred at sulfur fugacity and temperatures of logƒS2 = (−3.0), 1300–1100 °C in Bolshoi Bashart, and logƒS2 = (−3.0/+1.0), 1100–800 °C in Prospect 33, respectively. The paucity of chromite-PGM mineralization compared with giant chromite deposits in the mantle tectonite in supra-subduction zones (SSZ) of the Urals (Ray-Iz, Kempirsai) is ascribed to the peculiar petrologic nature (low depleted lherzolite) and geodynamic setting (rifted continental margin?) of the Kraka ophiolite, which did not enable drainage of the upper mantle with a large volume of mafic magma.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1362
Author(s):  
Fei Liu ◽  
Dongyang Lian ◽  
Weiwei Wu ◽  
Jingsui Yang

Ophiolite-hosted diamond from peridotites and podiform chromitites significantly differs from those of kimberlitic diamond and ultra-high pressure (UHP) metamorphic diamond in terms of occurrence, mineral inclusion, as well as carbon and nitrogen isotopic composition. In this review, we briefly summarize the global distribution of twenty-five diamond-bearing ophiolites in different suture zones and outline the bulk-rock compositions, mineral and particular Re-Os isotopic systematics of these ophiolitic chromitites and host peridotites. These data indicate that the subcontinental lithospheric mantle is likely involved in the formation of podiform chromitite. We also provide an overview of the UHP textures and unusual mineral assemblages, including diamonds, other UHP minerals (e.g., moissanite, coesite) and crustal minerals, which robustly offer evidence of crustal recycling in the deep mantle along the suprasubduction zone (SSZ) and then being transported to shallow mantle depths by asthenospheric mantle upwelling in mid-ocean-ridge and SSZ settings. A systematic comparison between four main genetic models provides insights into our understanding of the origin of ophiolite-hosted diamond and the formation of podiform chromitite. Diamond-bearing peridotites and chromitites in ophiolites are important objects to discover new minerals from the deep earth and provide clues on the chemical composition and the physical condition of the deep mantle.


Lithos ◽  
2021 ◽  
Vol 394-395 ◽  
pp. 106194
Author(s):  
Yang Huang ◽  
Lu Wang ◽  
Paul T. Robinson ◽  
Wenbin Ning ◽  
Yating Zhong ◽  
...  

2021 ◽  
Vol 362 ◽  
pp. 106318
Author(s):  
Timothy Kusky ◽  
Lu Wang ◽  
Paul T. Robinson ◽  
Yang Huang ◽  
Richard Wirth ◽  
...  

2021 ◽  
Author(s):  
Tao Ruan ◽  
Hong Zhong ◽  
Jianming Zhu ◽  
Zhong-Jie Bai

Abstract Podiform chromitite hosted in supra-subduction zone (SSZ) ophiolite accounts for a substantial proportion of the global chromium supply market. However, there is no consensus regarding the specific processes involved in the source and formation of this chromium. It seems unlikely that fractional crystallization of basaltic melt or the boninitic melt–mantle harzburgite reaction could provide such huge amounts of chromium given the constraints of Cr mass balance. Here we identify two specific melts responsible for the formation of the typical ophiolite-related Luobusa chromite deposit in the Yarlung–Zangbo Suture Zone in Tibet, China. One is Cr-rich melt derived from the deep asthenosphere, and the other is boninitic melt generated by hydrous melting of previously depleted peridotites. We propose that the Luobusa podiform chromitite was produced through mixing of these two melts, of which the primitive asthenospheric Cr-rich melt provided huge amounts of Cr, and the introduction of boninitic magma triggered the crystallization of chromite. The findings of this study are important for understanding the genesis of global podiform chromite deposits hosted in SSZ ophiolite.


Sign in / Sign up

Export Citation Format

Share Document