crustal recycling
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 24)

H-INDEX

35
(FIVE YEARS 5)

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1362
Author(s):  
Fei Liu ◽  
Dongyang Lian ◽  
Weiwei Wu ◽  
Jingsui Yang

Ophiolite-hosted diamond from peridotites and podiform chromitites significantly differs from those of kimberlitic diamond and ultra-high pressure (UHP) metamorphic diamond in terms of occurrence, mineral inclusion, as well as carbon and nitrogen isotopic composition. In this review, we briefly summarize the global distribution of twenty-five diamond-bearing ophiolites in different suture zones and outline the bulk-rock compositions, mineral and particular Re-Os isotopic systematics of these ophiolitic chromitites and host peridotites. These data indicate that the subcontinental lithospheric mantle is likely involved in the formation of podiform chromitite. We also provide an overview of the UHP textures and unusual mineral assemblages, including diamonds, other UHP minerals (e.g., moissanite, coesite) and crustal minerals, which robustly offer evidence of crustal recycling in the deep mantle along the suprasubduction zone (SSZ) and then being transported to shallow mantle depths by asthenospheric mantle upwelling in mid-ocean-ridge and SSZ settings. A systematic comparison between four main genetic models provides insights into our understanding of the origin of ophiolite-hosted diamond and the formation of podiform chromitite. Diamond-bearing peridotites and chromitites in ophiolites are important objects to discover new minerals from the deep earth and provide clues on the chemical composition and the physical condition of the deep mantle.


Geosphere ◽  
2021 ◽  
Author(s):  
M. Robinson Cecil ◽  
George E. Gehrels ◽  
Margaret E. Rusmore ◽  
Glenn J. Woodsworth ◽  
Harold H. Stowell ◽  
...  

The southern Coast Mountain batholith was episodically active from Jurassic to Eocene time and experienced four distinct high magmatic flux events during that period. Similar episodicity has been recognized in arcs worldwide, yet the mechanism(s) driving such punctuated magmatic behavior are debated. This study uses zircon Hf and O isotopes, with whole-rock and mineral geochemistry, to track spatiotemporal changes in southern Coast Mountains batholith melt sources and to evaluate models of flare-up behavior and crust formation in Cordilleran arc systems. Zircon Hf isotope analysis yielded consistently primitive values, with all zircon grains recording initial εHf between +6 and +16. The majority (97%) of zircons analyzed yielded δ18O values between 4.2‰ and 6.5‰, and only five grains recorded values of up to 8.3‰. These isotopic results are interpreted to reflect magmatism dominated by mantle melting during all time periods and across all areas of the southern batholith, which argues against the periodic input of more melt-fertile crustal materials as the driver of episodic arc magmatism. They also indicate that limited crustal recycling is needed to produce the large volumes of continental crust generated in the batholith. Although the isotopic character of intrusions is relatively invariant through time, magmas emplaced during flare-ups record higher Sr/Y and La/Yb(N) and lower zircon Ti and Yb concentrations, which is consistent with melting in thickened crust with garnet present as a fractionating phase. Flare-ups are also temporally associated with periods when the southern Coast Mountains batholith both widens and advances inboard. We suggest that the landward shift of the arc into more fertile lithospheric mantle domains triggers voluminous magmatism and is accompanied by magmatic and/or tectonic thickening. Overall, these results demonstrate that the magmatic growth of Cordilleran arcs can be spatially and temporally complex without requiring variability in the contributions of crust and/or mantle to the batholith.


2021 ◽  
Author(s):  
Lei Gao ◽  
Shuwen Liu ◽  
Peter Cawood ◽  
Jintuan Wang ◽  
Guozheng Sun ◽  
...  

Abstract The redox evolution of Archean mantle impacted Earth differentiation, mantle melting and the nature of chemical equilibrium between mantle, ocean and atmosphere of the early Earth. However, how and why it varies with time remain controversial. Archean mantle-derived volcanic rocks, especially basalts are ideal lithologies for reconstructing the mantle redox state. Here we show that the ~3.8-2.5 Ga basalts from fourteen cratons are subdivided geochemically into two groups, B-1, showing incompatible element depleted and modern mid-ocean ridge basalt-like features ((Nb/La)PM ≥ 0.75) and B-2 ((Nb/La)PM < 0.75), characterized by modern island arc basalt-like features. Our updated V-Ti redox proxy indicates the Archean upper mantle was more reducing than today, and that there was a significant redox heterogeneity between ambient and modified mantle presumably related to crustal recycling, perhaps via plate subduction, as shown by B-1 and B-2 magmas, respectively. The oxygen fugacity of modified mantle exhibits a ~1.5-2.0 log units increase over ~3.8-2.5 Ga, whereas the ambient mantle becomes more and more heterogeneous with respect to redox, apart from a significant increase at ~2.7 Ga. These findings are coincident with the increase in the proportions of crustal recycling-related lithologies with associated enrichment of associated incompatible elements (e.g., Th/Nb), indicating that increasing recycling played a crucial role on the secular oxidation of Archean upper mantle.


2021 ◽  
Vol 354 ◽  
pp. 106075
Author(s):  
You Wu ◽  
Xiaoyu Guo ◽  
Rui Gao ◽  
Sanzhong Li ◽  
Haiyan Wang ◽  
...  

Author(s):  
Xin Jin ◽  
Yu-Xiu Zhang ◽  
Donna L. Whitney ◽  
Kai-Jun Zhang ◽  
Natalie H. Raia ◽  
...  

Subduction and exhumation processes, interacting with each other, play a key role in crustal recycling. Downgoing oceanic lithosphere constitutes the dominant input at subduction margins, but subduction erosion, the removal of crustal material from the overriding plate, may add additional ingredients and complexity to the subduction factory. Different exhumation models have been proposed to explain how subducted materials are exhumed and therefore contribute to crustal recycling, e.g., exhumation up the subduction channel versus diapiric rise through the mantle wedge that overlies the subducted plate. The recently discovered Baqing eclogite-bearing high-pressure metamorphic complex, central Tibet, China, provides an excellent opportunity to decode the exhumation process, the origin of subduction-related magmatism, and the crustal structure of the North Qiangtang block, in addition to elucidating processes of crustal recycling. Pressure-temperature-time (P-T-t) paths and zircon U-Pb ages and trace-element compositions for Baqing high-pressure rocks were used to evaluate exhumation processes and to determine the geochemical and tectonic affinity of the Baqing metamorphic complex. The Baqing metamorphic complex is mainly composed of eclogite, gneiss, and schist. It is located between two geologically distinct terranes—the South Qiangtang block, which has early Paleozoic basement, and the North Qiangtang block, which has Proterozoic basement. In the schist, zircon cores with steep heavy rare earth element (HREE) slopes and oscillatory zoning yielded inherited ages that are similar to detrital zircon ages for the South Qiangtang block schist; in contrast, zircon rims with flat HREE slopes yielded metamorphic ages of 224 Ma that are similar to the metamorphic ages obtained for the Baqing eclogite. In contrast, zircons from the gneiss yielded an upper-intercept age of 1033 ± 32 Ma (interpreted as the crystallization age) and a lower-intercept metamorphic age of 198 ± 4 Ma. Field relations indicate that gneiss and eclogite/amphibolite were exhumed together, so the ∼20 m.y. gap between the gneiss and the metabasite metamorphism may indicate a long exhumation duration. In the region, Proterozoic ages of ca. 1000 Ma are known only from the North Qiangtang block; we thus propose that the Baqing gneiss originated from North Qiangtang block Proterozoic basement, which, along with North Qiangtang block Triassic arc magmatic rocks and the discrepancies between ancient and current arc-trench distances, results in estimates of ∼20−170 km of Triassic subduction erosion. Results of P-T analyses show that most eclogite, amphibolite, and schist shared a similar clockwise P-T path, different from that of the gneiss, which records a higher geothermal gradient. The clockwise P-T trajectory, long exhumation duration, lack of significant heating during exhumation, and the South Qiangtang block affinity of the schist (host rock of the Baqing eclogite) are consistent with subduction-channel exhumation rather than diapiric rise through the mantle wedge. Geochemical similarities between the North Qiangtang block Triassic subduction-related rocks and the Baqing gneiss may signal the involvement of unexhumed Baqing metamorphic complex in the recycling of the Qiangtang crust.


2020 ◽  
Vol 117 (49) ◽  
pp. 30993-31001
Author(s):  
Matthew G. Jackson ◽  
Janne Blichert-Toft ◽  
Saemundur A. Halldórsson ◽  
Andrea Mundl-Petermeier ◽  
Michael Bizimis ◽  
...  

Rare high-3He/4He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth’s interior. Only high-3He/4He OIB exhibit anomalous182W—an isotopic signature inherited during the earliest history of Earth—supporting an ancient origin of high3He/4He. However, it is not understood why some OIB host anomalous182W while others do not. We provide geochemical data for the highest-3He/4He lavas from Iceland (up to 42.9 times atmospheric) with anomalous182W and examine how Sr-Nd-Hf-Pb isotopic variations—useful for tracing subducted, recycled crust—relate to high3He/4He and anomalous182W. These data, together with data on global OIB, show that the highest-3He/4He and the largest-magnitude182W anomalies are found only in geochemically depleted mantle domains—with high143Nd/144Nd and low206Pb/204Pb—lacking strong signatures of recycled materials. In contrast, OIB with the strongest signatures associated with recycled materials have low3He/4He and lack anomalous182W. These observations provide important clues regarding the survival of the ancient He and W signatures in Earth’s mantle. We show that high-3He/4He mantle domains with anomalous182W have low W and4He concentrations compared to recycled materials and are therefore highly susceptible to being overprinted with low3He/4He and normal (not anomalous)182W characteristic of subducted crust. Thus, high3He/4He and anomalous182W are preserved exclusively in mantle domains least modified by recycled crust. This model places the long-term preservation of ancient high3He/4He and anomalous182W in the geodynamic context of crustal subduction and recycling and informs on survival of other early-formed heterogeneities in Earth’s interior.


Sign in / Sign up

Export Citation Format

Share Document