nucleic acid binding activity
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 1)

2020 ◽  
Vol 217 (7) ◽  
Author(s):  
Michael Devos ◽  
Giel Tanghe ◽  
Barbara Gilbert ◽  
Evelien Dierick ◽  
Maud Verheirstraeten ◽  
...  

Aberrant detection of endogenous nucleic acids by the immune system can cause inflammatory disease. The scaffold function of the signaling kinase RIPK1 limits spontaneous activation of the nucleic acid sensor ZBP1. Consequently, loss of RIPK1 in keratinocytes induces ZBP1-dependent necroptosis and skin inflammation. Whether nucleic acid sensing is required to activate ZBP1 in RIPK1-deficient conditions and which immune pathways are associated with skin disease remained open questions. Using knock-in mice with disrupted ZBP1 nucleic acid–binding activity, we report that sensing of endogenous nucleic acids by ZBP1 is critical in driving skin pathology characterized by antiviral and IL-17 immune responses. Inducing ZBP1 expression by interferons triggers necroptosis in RIPK1-deficient keratinocytes, and epidermis-specific deletion of MLKL prevents disease, demonstrating that cell-intrinsic events cause inflammation. These findings indicate that dysregulated sensing of endogenous nucleic acid by ZBP1 can drive inflammation and may contribute to the pathogenesis of IL-17–driven inflammatory skin conditions such as psoriasis.


2020 ◽  
Vol 118 (3) ◽  
pp. 75a
Author(s):  
Saumya M. De Silva ◽  
Nicholas J. Schnicker ◽  
Catherine A. Musselman

2019 ◽  
Vol 316 (1) ◽  
pp. F101-F112
Author(s):  
Michael Fähling ◽  
Alexander Paliege ◽  
Sofia Jönsson ◽  
Mediha Becirovic-Agic ◽  
Jacqueline M. Melville ◽  
...  

The aim was to identify new targets that regulate gene expression at the posttranscriptional level in angiotensin II (ANGII)-mediated hypertension. Heparin affinity chromatography was used to enrich nucleic acid-binding proteins from kidneys of two-kidney, one-clip (2K1C) hypertensive Wistar rats. The experiment was repeated with 14-day ANGII infusion using Alzet osmotic mini pumps, with or without ANGII receptor AT1a inhibition using losartan in the drinking water. Mean arterial pressure increased after 2K1C or ANGII infusion and was inhibited with losartan. Heparin affinity chromatography and mass spectrometry were used to identify Annexin-A2 (ANXA2) as having differential nucleic acid-binding activity. Total Annexin-A2 protein expression was unchanged, whereas nucleic acid-binding activity was increased in both kidneys of 2K1C and after ANGII infusion through AT1a stimulation. Costaining of Annexin-A2 with α-smooth muscle actin and aquaporin 2 showed prominent expression in the endothelia of larger arteries and the cells of the inner medullary collecting duct. The nuclear factor of activated T cells (NFAT) transcription factor was identified as a likely Annexin-A2 target using enrichment analysis on a 2K1C microarray data set and identifying several binding sites in the regulatory region of the mRNA. Expression analysis showed that ANGII increases NFAT5 protein but not mRNA level and, thus, indicated that NFAT5 is regulated by posttranscriptional regulation, which correlates with activation of the RNA-binding protein Annexin-A2. In conclusion, we show that ANGII increases Annexin-A2 nucleic acid-binding activity that correlates with elevated protein levels of the NFAT5 transcription factor. NFAT signaling appears to be a major contributor to renal gene regulation in high-renin states.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2614 ◽  
Author(s):  
Tyler Weaver ◽  
Emma Morrison ◽  
Catherine Musselman

The eukaryotic genome is packaged into the cell nucleus in the form of chromatin, a complex of genomic DNA and histone proteins. Chromatin structure regulation is critical for all DNA templated processes and involves, among many things, extensive post-translational modification of the histone proteins. These modifications can be “read out” by histone binding subdomains known as histone reader domains. A large number of reader domains have been identified and found to selectively recognize an array of histone post-translational modifications in order to target, retain, or regulate chromatin-modifying and remodeling complexes at their substrates. Interestingly, an increasing number of these histone reader domains are being identified as also harboring nucleic acid binding activity. In this review, we present a summary of the histone reader domains currently known to bind nucleic acids, with a focus on the molecular mechanisms of binding and the interplay between DNA and histone recognition. Additionally, we highlight the functional implications of nucleic acid binding in chromatin association and regulation. We propose that nucleic acid binding is as functionally important as histone binding, and that a significant portion of the as yet untested reader domains will emerge to have nucleic acid binding capabilities.


2013 ◽  
Vol 110 (41) ◽  
pp. 16450-16455 ◽  
Author(s):  
H.-S. Seo ◽  
B. J. Blus ◽  
N. Z. Jankovic ◽  
G. Blobel

2012 ◽  
Vol 47 (2) ◽  
pp. 228-241 ◽  
Author(s):  
Mayumi Ishida ◽  
Hideaki Shimojo ◽  
Aki Hayashi ◽  
Rika Kawaguchi ◽  
Yasuko Ohtani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document