tripartite symbiosis
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

mBio ◽  
2021 ◽  
Author(s):  
Felix Schalk ◽  
Cene Gostinčar ◽  
Nina B. Kreuzenbeck ◽  
Benjamin H. Conlon ◽  
Elisabeth Sommerwerk ◽  
...  

Fungus-growing termites have optimized the decomposition of recalcitrant plant biomass to access valuable nutrients by engaging in a tripartite symbiosis with complementary contributions from a fungal mutualist and a codiversified gut microbiome. This complex symbiotic interplay makes them one of the most successful and important decomposers for carbon cycling in Old World ecosystems.


Protistology ◽  
2021 ◽  
Author(s):  
Alexandra Migunova ◽  
◽  
Alexander Pinevich ◽  

2020 ◽  
Author(s):  
Robin Guilhot ◽  
Antoine Rombaut ◽  
Anne Xuéreb ◽  
Kate Howell ◽  
Simon Fellous

AbstractInteractions between microbial symbionts of metazoan hosts are emerging as key features of symbiotic systems. Little is known about the role of such interactions on the maintenance of symbiosis through host’s life cycle. We studied the influence of symbiotic bacteria on the maintenance of symbiotic yeast through metamorphosis of the fly Drosophila melanogaster. To this end we mimicked the development of larvae in natural fruit. In absence of bacteria yeast was never found in young adults. However, yeast could maintain through metamorphosis when larvae were inoculated with symbiotic bacteria isolated from D. melanogaster faeces. Furthermore, an Enterobacteriaceae favoured yeast transstadial maintenance. Because yeast is a critical symbiont of D. melanogaster flies, bacterial influence on host-yeast association may have consequences for the evolution of insect-yeast-bacteria tripartite symbiosis and their cooperation.Summary statementBacterial symbionts of Drosophila influence yeast maintenance through fly metamorphosis, a novel observation that may have consequences for the evolution of insect-yeast-bacteria interactions.


2020 ◽  
Vol 31 (3) ◽  
pp. 586-601
Author(s):  
Yuni Sri Rahayu

PurposeThe study aimed at developing the bioremediation model of Lapindo mud through multisymbiotic organism.Design/methodology/approachThe research was conducted using completely randomized design. The model plants chosen in this research were soybean. The interaction pattern during the treatment was used to develop the bioremediation model based on the parameters.FindingsThe results showed that there was an effect of the type of organism on the parameters, namely: the growth of plant (biomass, height, length of root, and number of leaves), the biomass of root nodules, the percentage of mycorrhizal infection, the content of water, nitrogen, phosphorus, and total petroleum hydrocarbons (TPHs). There was a pattern of multisymbiotic interaction between each organism and roles of each symbiont in that interaction. Therefore, the plants were capable of surviving in the environment of Sidoarjo Lapindo mud. This pattern can be named as the bioremediation model proposed, which is the analogy of tripartite symbiosis between plants, mycorrhizae, and Rhizobium but also adding plant growth bacteria such as phosphate-solubilizing bacteria and hydrocarbon degradation bacteria. The implementation of this model can be used to treat oil-contaminated soil in order to be used as a plant growth medium.Originality/valuePhytoremediation is a new and promising approach to remove contaminants in the environment but using plants alone for remediation confronts many limitations. Therefore, the application of plant-growth-promoting rhizobia (PGPR) has been extended to remediate contaminated soils in association with plants (Zhuang et al., 2007). The development of the model will use the analogy of tripartite symbiosis between plants, mycorrhizae, and Rhizobium. The developed model will be based on the interaction pattern on each parameters obtained. Bioremediation is chosen because it is considered an effective technique to transform toxic components into less toxic products without disrupting the surrounding environment. Besides, bioremediation is cheaper and environment-friendly because it utilizes microorganisms to clean pollutants from the environment (Nugroho, 2006).


2019 ◽  
Vol 85 (24) ◽  
Author(s):  
Kazutaka Takeshita ◽  
Takanori Yamada ◽  
Yuto Kawahara ◽  
Takashi Narihiro ◽  
Michihiro Ito ◽  
...  

ABSTRACT A number of anaerobic ciliates, unicellular eukaryotes, intracellularly possess methanogenic archaea and bacteria as symbiotic partners. Although this tripartite relationship is of interest in terms of the fact that each participant is from a different domain, the difficulty in culture and maintenance of those host species with symbiotic partners has disturbed both ecological and functional studies so far. In this study, we obtained a stable culture of a small anaerobic scuticociliate, strain GW7. By transmission electron microscopic observation and fluorescent in situ hybridization with domain-specific probes, we demonstrate that GW7 possesses both archaeal and bacterial endosymbionts in its cytoplasm. These endosymbionts are in dependently associated with hydrogenosomes, which are organelle producing hydrogen and ATP under anaerobic conditions. Clone library analyses targeting prokaryotic 16S rRNA genes, fluorescent in situ hybridization with endosymbiont-specific probes, and molecular phylogenetic analyses revealed the phylogenetic affiliations and intracellular localizations of these endosymbionts. The endosymbiotic archaeon is a methanogen belonging to the genus Methanoregula (order Methanomicrobiales); a member of this genus has previously been described as the endosymbiont of an anaerobic ciliate from the genus Metopus (class Armophorea), which is only distantly related to strain GW7 (class Oligohymenophorea). The endosymbiotic bacterium belongs to the family Holosporaceae of the class Alphaproteobacteria, which also comprises several endosymbionts of various aerobic ciliates. For this endosymbiotic bacterium, we propose a novel candidate genus and species, “Candidatus Hydrogenosomobacter endosymbioticus.” IMPORTANCE Tripartite symbioses between anaerobic ciliated protists and their intracellular archaeal and bacterial symbionts are not uncommon, but most reports have been based mainly on microscopic observations. Deeper insights into the function, ecology, and evolution of these fascinating symbioses involving partners from all three domains of life have been hampered by the difficulties of culturing anaerobic ciliates in the laboratory and the frequent loss of their prokaryotic partners during long-term cultivation. In the present study, we report the isolation of an anaerobic scuticociliate, strain GW7, which has been stably maintained in our laboratory for more than 3 years without losing either of its endosymbionts. Unexpectedly, molecular characterization of the endosymbionts revealed that the bacterial partner of GW7 is phylogenetically related to intranuclear endosymbionts of aerobic ciliates. This strain will enable future genomic, transcriptomic, and proteomic analyses of the interactions in this tripartite symbiosis and a comparison with endosymbioses in aerobic ciliates.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Nitsan Bar-Shmuel ◽  
Elena Rogovin ◽  
Shimon Rachmilevitch ◽  
Ariel-Leib-Leonid Friedman ◽  
Oren Shelef ◽  
...  

Rhizosphere ◽  
2017 ◽  
Vol 4 ◽  
pp. 29-35
Author(s):  
Diego Guerrero-Ariza ◽  
Raúl Posada

2017 ◽  
Vol 48 (4) ◽  
pp. 680-688 ◽  
Author(s):  
Maíra Akemi Toma ◽  
Teotonio Soares de Carvalho ◽  
Amanda Azarias Guimarães ◽  
Elaine Martins da Costa ◽  
Jacqueline Savana da Silva ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document