rutting behavior
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 18)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 961 (1) ◽  
pp. 012049
Author(s):  
Noor Sadiq ◽  
Miami M. Hilal ◽  
Mohammed Y. Fattah

Abstract Pavement is a complex structure consisting of several layers of different materials that influence its stressful behavior. Permanent deformation can occur in pavement layers of insufficient hardness at high temperatures. Significant rutting normally only occurs during hot weather, especially when the flexible pavement surface temperature is 60 ° C or higher. 2D model analysis using ABAQUS software can predict the rutting behavior. The modeling procedure assumes that all materials performance is a linear elastic. Surface, base, subbase and subgrade layers consist of models. Models in every pavement model, subgrade layers are supposed to have endless depth. This paper presents an element-finite model (FE) for the behavior analysis of the dynamic loading unreinforced and geogrid reinforced paving. Increased loading of the model and critical pavement responses for unreinforced or geogrid-reinforced flexible paving, such as vertical stress and vertical surface deflection, were determined. The results indicated a difference in the displacement results when adding the geogrid layer. The results also showed a significant improvement in the behavior of the pavement system. A parametric study was carried out on a type of Truck (3-S1) and the applied pressure was 36 tons with different thicknesses of the asphalt layer once 150 mm and again 25 cm at different temperatures of 20, 40 and 60 ° C. It was found that the higher the temperatures, the higher the displacement as well.


2021 ◽  
Author(s):  
Krešimir Kavčić ◽  
Marco Apollonio ◽  
Luca Corlatti ◽  
Nikica Šprem
Keyword(s):  

BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Eva de la Peña ◽  
Javier Pérez-González ◽  
José Martín ◽  
Giovanni Vedel ◽  
Juan Carranza

Abstract Background In polygynous mammals, signalling may play a decisive role in mating behavior, mediating the intensity of male fights and female mate choice. During the rutting season, male red deer may show a visible dark patch in their ventral fur. Recently, this patch has been suggested to act as a flexible sexual signal, due to its relationships with other variables such as age, body size, antler development, volatile compounds, or the competitive environment. The analysis of fur pigmentation at the ventral patch suggests that this might also visually indicate the male intrinsic predisposition to take part in mating competition. Results To assess the possible role of this trait as a communicative signal related to mate competition, we used red deer behavioral observations during the rut in Doñana National Park (Spain) to examine the link between the degree of expression of the dark ventral patch and the rutting activity (assessed from both intra-and-inter-sexual behaviors). Consistent with our predictions, we found in a field study that males with large dark patches showed a higher frequency of rutting behaviors (mainly roaring and flehmen), more interactions with females, and attained larger harem sizes. Conclusions The dark ventral patch was a better predictor of male behavior than antler tines or territory holding, thus standing as a short-term indicator of male willingness to invest in mating competition.


2021 ◽  
Vol 14 (6) ◽  
pp. 708-719
Author(s):  
Hossein Alimohammadi ◽  
Junxing Zheng ◽  
Ashley Buss ◽  
Vernon R. Schaefer ◽  
Christopher Williams ◽  
...  

2021 ◽  
Author(s):  
Tommy E. Nantung ◽  
Jusang Lee ◽  
John E. Haddock ◽  
M. Reza Pouranian ◽  
Dario Batioja Alvarez ◽  
...  

The fundamentals of rutting behavior for thin full-depth flexible pavements (i.e., asphalt thickness less than 12 inches) are investigated in this study. The scope incorporates an experimental study using full-scale Accelerated Pavement Tests (APTs) to monitor the evolution of each pavement structural layer's transverse profiles. The findings were then employed to verify the local rutting model coefficients used in the current pavement design method, the Mechanistic-Empirical Pavement Design Guide (MEPDG). Four APT sections were constructed using two thin typical pavement structures (seven-and ten-inches thick) and two types of surface course material (dense-graded and SMA). A mid-depth rut monitoring and automated laser profile systems were designed to reconstruct the transverse profiles at each pavement layer interface throughout the process of accelerated pavement deterioration that is produced during the APT. The contributions of each pavement structural layer to rutting and the evolution of layer deformation were derived. This study found that the permanent deformation within full-depth asphalt concrete significantly depends upon the pavement thickness. However, once the pavement reaches sufficient thickness (more than 12.5 inches), increasing the thickness does not significantly affect the permanent deformation. Additionally, for thin full-depth asphalt pavements with a dense-graded Hot Mix Asphalt (HMA) surface course, most pavement rutting is caused by the deformation of the asphalt concrete, with about half the rutting amount observed within the top four inches of the pavement layers. However, for thin full-depth asphalt pavements with an SMA surface course, most pavement rutting comes from the closet sublayer to the surface, i.e., the intermediate layer. The accuracy of the MEPDG’s prediction models for thin full-depth asphalt pavement was evaluated using some statistical parameters, including bias, the sum of squared error, and the standard error of estimates between the predicted and actual measurements. Based on the statistical analysis (at the 95% confidence level), no significant difference was found between the version 2.3-predicted and measured rutting of total asphalt concrete layer and subgrade for thick and thin pavements.


2020 ◽  
Author(s):  
W. Robinson

A full-scale airfield pavement test section was constructed and trafficked by the U.S. Army Engineer Research and Development Center (ERDC) to evaluate the performance of relatively thin airfield pavement structures. The test section consisted of 16 test items that included three asphalt pavement thicknesses and two different aggregate base courses. The test items were subjected to simulated aircraft traffic to evaluate their response and performance to realistic aircraft loads and to evaluate the effect of reductions in tire pressure on thin asphalt pavement. Rutting behavior, pavement cracking, instrumentation response, and falling weight deflectometer response were monitored at selected traffic intervals. The results of this study were used to extend existing Department of Defense pavement design and evaluation techniques to include the evaluation of airfield pavement sections that do not meet the current criteria for aggregate base quality and minimum asphalt concrete surface thickness. These performance data were used to develop new aggregate base failure design curves using existing stress-based design methodology.


2020 ◽  
Vol 265 ◽  
pp. 120366 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Junxing Zheng ◽  
Ashley Buss ◽  
Vernon R. Schaefer ◽  
Christopher Williams ◽  
...  

Author(s):  
W. Jeremy Robinson ◽  
Jeb S. Tingle ◽  
Carlos R. Gonzalez

A full-scale airfield pavement test section was constructed and trafficked by the U.S. Army Engineer Research and Development Center (ERDC) to evaluate the performance of relatively thin airfield pavement structures. The test section consisted of four test items that included three asphalt pavement thicknesses and two different aggregate base courses. The test items were subjected to simulated aircraft traffic to evaluate their response and performance to realistic aircraft loads. Rutting behavior, instrumentation response, and falling weight deflectometer response were monitored at selected traffic intervals. It was found that the performance of the airfield pavement sections were most sensitive to aggregate base course properties, where a 50% reduction in base course strength resulted in a 99% reduction in allowable passes. The data suggested that when sufficient asphalt thickness is not provided, the failure mechanism shifted from subgrade failure to base course failure, particularly at higher subgrade CBR values. In addition, the number of aircraft passes sustained was less than that predicted by current Department of Defense (DOD) methods that include assumptions of a high-quality aggregate base and a minimum asphalt concrete thickness. The results of this study were used to extend existing DOD pavement design and evaluation techniques to include the evaluation of airfield pavement sections that do not meet the current criteria for aggregate base quality and minimum asphalt concrete surface thickness. These performance data were used to develop a new base failure design curve using existing stress-based design criteria.


Sign in / Sign up

Export Citation Format

Share Document