scholarly journals Evaluation of thin flexible pavements under simulated aircraft traffic

2020 ◽  
Author(s):  
W. Robinson

A full-scale airfield pavement test section was constructed and trafficked by the U.S. Army Engineer Research and Development Center (ERDC) to evaluate the performance of relatively thin airfield pavement structures. The test section consisted of 16 test items that included three asphalt pavement thicknesses and two different aggregate base courses. The test items were subjected to simulated aircraft traffic to evaluate their response and performance to realistic aircraft loads and to evaluate the effect of reductions in tire pressure on thin asphalt pavement. Rutting behavior, pavement cracking, instrumentation response, and falling weight deflectometer response were monitored at selected traffic intervals. The results of this study were used to extend existing Department of Defense pavement design and evaluation techniques to include the evaluation of airfield pavement sections that do not meet the current criteria for aggregate base quality and minimum asphalt concrete surface thickness. These performance data were used to develop new aggregate base failure design curves using existing stress-based design methodology.

Author(s):  
W. Jeremy Robinson ◽  
Jeb S. Tingle ◽  
Carlos R. Gonzalez

A full-scale airfield pavement test section was constructed and trafficked by the U.S. Army Engineer Research and Development Center (ERDC) to evaluate the performance of relatively thin airfield pavement structures. The test section consisted of four test items that included three asphalt pavement thicknesses and two different aggregate base courses. The test items were subjected to simulated aircraft traffic to evaluate their response and performance to realistic aircraft loads. Rutting behavior, instrumentation response, and falling weight deflectometer response were monitored at selected traffic intervals. It was found that the performance of the airfield pavement sections were most sensitive to aggregate base course properties, where a 50% reduction in base course strength resulted in a 99% reduction in allowable passes. The data suggested that when sufficient asphalt thickness is not provided, the failure mechanism shifted from subgrade failure to base course failure, particularly at higher subgrade CBR values. In addition, the number of aircraft passes sustained was less than that predicted by current Department of Defense (DOD) methods that include assumptions of a high-quality aggregate base and a minimum asphalt concrete thickness. The results of this study were used to extend existing DOD pavement design and evaluation techniques to include the evaluation of airfield pavement sections that do not meet the current criteria for aggregate base quality and minimum asphalt concrete surface thickness. These performance data were used to develop a new base failure design curve using existing stress-based design criteria.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Song Yang ◽  
Bing Qi ◽  
Zhensheng Cao ◽  
Shaoqiang Zhang ◽  
Huailei Cheng ◽  
...  

The strain responses of asphalt pavement layer under vehicular loading are different from those under falling weight deflectometer (FWD) loading, due to the discrepancies between the two types of loadings. This research aims to evaluate and compare the asphalt layer responses under vehicular loading and FWD loadings. Two full-scale asphalt pavement structures, namely, flexible pavement and semirigid pavement, were constructed and instrumented with strain gauges. The strain responses of asphalt layers under vehicular and FWD loadings were measured and analyzed. Except for field measurements, the finite element (FE) models of the experimental pavements were established to simulate the pavement responses under a wide range of loading conditions. Field strain measurements indicate that the asphalt layer strain under vehicular loading increases with the rising temperature roughly in an exponential mode, while it decreases with the rising vehicular speed approximately linearly. The strain pulses in the asphalt layer generated by FWD loading are different from those induced by vehicular loading. The asphalt layer strains generated by FWD loading are close to those induced by low vehicular speed (35 km/h). The results from the FE model imply that the asphalt layer strains under FWD loading and vehicular loading are distributed similarly in the depth profile. For flexible pavement, the position of critical strain shifts gradually from the bottom of the asphalt layer to the mid-depth of the layer, as the temperature increases. For semirigid pavement, the position of critical strain is always located at the intermediate depth of the asphalt layer, regardless of temperatures.


2014 ◽  
Vol 620 ◽  
pp. 55-60 ◽  
Author(s):  
Xin Qiu ◽  
Xiao Hua Luo ◽  
Qing Yang

With the popularization of falling weight deflectometer (FWD) to calculate the stiffness related parameters of the pavement structures, non-destructive evaluation of physical properties and performance of pavements has taken a new direction. FWD backcalculation is mathematically an inverse problem that could be solved either by deterministic or by probabilistic approach. A review of the currently used backcalculation procedures indicates that the calculation is generally based on a homogeneous, continuous, and linear elastic multi-layer system. Identifying effective data of dynamic deflection basins seems to be an important task for performing modulus backcalculation. Therefore, the main objective of this paper was to discuss the distribution features of dynamic deflection basins of asphalt pavements with crack distresses, and present the reasonable criteria to filter the testing data of FWD deflection basins. Finally, the study aims to validate the established criteria by conducting in-situ case study.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Guiling Hu ◽  
Wenyang Han ◽  
Jincheng Wei ◽  
Deqing Wang ◽  
Xiaomeng Zhang ◽  
...  

To study the in-situ response and performance of asphalt pavement, instrumenting pavement with a variety of sensors has become one of the most important tools in the field or accelerated load facilities. In the dynamic response collection process, engineers are more concerned with the load position strain of the pavement structure due to wheel wander. This paper proposes a method to obtain the load position and the strain at the load position when there is no lateral-axis positioning system based on multilayer elastic theory. The test section was paved in the field with installed strain sensors to verify and apply the proposed method. The verification results showed that both the calculated load position and load position strain matched the measured values with an absolute difference range of 5–60 mm, 0.5–2.5 με, respectively. The application results showed that the strain at the load position calculated by the proposed method had a good correlation with the temperature, as expected.


2021 ◽  
Vol 13 (13) ◽  
pp. 2613
Author(s):  
Nectaria Diamanti ◽  
A. Peter Annan ◽  
Steven R. Jackson ◽  
Dylan Klazinga

Density is one of the most important parameters in the construction of asphalt mixtures and pavement engineering. When a mixture is properly designed and compacted, it will contain enough air voids to prevent plastic deformation but will have low enough air void content to prevent water ingress and moisture damage. By mapping asphalt pavement density, areas with air void content outside of the acceptable range can be identified to predict its future life and performance. We describe a new instrument, the pavement density profiler (PDP) that has evolved from many years of making measurements of asphalt pavement properties. This instrument measures the electromagnetic (EM) wave impedance to infer the asphalt pavement density (or air void content) locally and over profiles.


Author(s):  
Randy B. Machemehl ◽  
Feng Wang ◽  
Jorge A. Prozzi

Truck tire inflation pressure plays an important role in the tire–pavement interaction process. As a conventional approximation method in many pavement studies, tire–pavement contact stress is frequently assumed to be uniformly distributed over a circular contact area and to be simply equal to the tire pressure. However, recent studies have demonstrated that the tire–pavement contact stress is far from uniformly distributed. Measured tire–pavement contact stress data were input into an elastic multilayer pavement analysis program to compute pavement immediate responses. Two asphalt concrete pavement structures, a thick pavement and a thin pavement, were investigated. Major pavement responses at locations in the pavement structures were computed with the measured tire–pavement contact stress data and were compared with the conventional method. The computation results showed that the conventional method tends to underestimate pavement responses at low tire pressures and to overestimate pavement responses at high tire pressures. A two-way analysis of variance model was used to compare the pavement responses to identify the effects of truck tire pressure on immediate pavement responses. Statistical analysis found that tire pressure was significantly related to tensile strains at the bottom of the asphalt concrete layer and stresses near the pavement surface for both the thick and thin pavement structures. However, tire pressure effects on vertical strain at the top of the subgrade were minor, especially in the thick pavement.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 972
Author(s):  
Sang-Hyuk Lee ◽  
Jong-Won Lee ◽  
Moon-Kyung Kim ◽  
Hee-Mun Park

The purpose of this study was to analyze the effect of titanium dioxide (TiO2) on reducing nitrogen oxide (NOx) concentrations using the statistical method of the Anderson-Darling test. To compare and analyze this effect, a spray-type form of TiO2 was applied to the asphalt pavement surface on urban roads. Data acquisition for NOx concentration was collected from a test section with TiO2 applied and a reference section without TiO2 applied. The probabilities of occurrence of the NOx concentration in the test and reference section were estimated and compared using the Anderson-Darling test. In sum, most of the NOx concentrations were probabilistically lower in the test section. The average probability of the NOx concentration in the test section in the ‘low’ range was 46.2% higher than in the reference section. In the ‘high’ and ‘moderate’ ranges, the average probability of the NOx concentration compared to that of the reference section was lower by 28.1% and 18.8%, respectively. These results revealed that the photochemical reaction from the TiO2 material applied on asphalt pavement was effective in reducing NOx.


Sign in / Sign up

Export Citation Format

Share Document