sandstone permeability
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 43 (4) ◽  
pp. 467-475
Author(s):  
A. I. Shayakhmetov ◽  
V. L. Malyshev ◽  
E. F. Moiseeva ◽  
A. I. Ponomarev ◽  
Yu. V. Zeigman

The purpose of this work is to study the effect of carbon dioxide oil solubility on the aggregation of asphaltene associates and decrease of oil permeability of sandstones. Consideration is given to the interaction variants of oil and carbon dioxide in a free volume before being injected into a porous medium and immediately in the porous medium. The influence of oil composition on the aggregation of asphaltene associates is studied. The effect of the dissolved carbon dioxide on associate dispersion in oil is examined through oil filtering in sandstones. If asphaltene aggregation occurs in a porous medium it causes pore plugging leading to reduced permeability, complicates the development of carbon dioxide injection wells and, as a result, prevents from achieving the planned indicators of oil production and oil recovery. It is found that in the case when oil interacts with carbon dioxide in the free volume before being injected into a porous medium, the increase in the volume of filtered oil and the concentration of carbon dioxide dissolved in oil, and decrease in sandstone permeability reduce the relative mobility of oil with the dissolved carbon dioxide. The significant influence of sandstone permeability on the experimental results indicates that the sizes of asphaltene aggregates are comparable to the sizes of small pores. We have not observed complete attenuation of filtration after passing of oil with dissolved carbon dioxide through sandstones. Based on the analysis of changes in oil composition and properties carried out in the laboratory experiments on oil displacement by carbon dioxide rims, it has been determined that aggregation of asphaltene associates takes place under immediate contact of oil and carbon dioxide in a porous medium. The higher the asphaltene content in oil, the lower the formation permeability, whereas tight formations feature a more significant decrease in permeability.


2021 ◽  
Vol 8 (1) ◽  
pp. 201792
Author(s):  
Honggang Zhao ◽  
Chao Liu ◽  
Gun Huang

Mechanical response, deformation behaviour and permeability evolution of surrounding rock under unloading conditions are of significant importance in rock engineering activities. In this research, triaxial experiments of sandstone subjected to different initial confining pressures and unloading rates under fixed axial stress were conducted. The results showed that sandstones experienced shear dilatancy before failure. However, the dilatancy factor did not decrease with increasing confining pressure, i.e. the dilatancy behaviour was not suppressed, which contradicted the phenomenon under increasing axial stress. The crack density also increased with increasing initial confining pressure. Furthermore, the normalized permeability was positively correlated with unloading rates. The sandstone permeability was closely related to the shear dilatancy behaviour. In the accelerated dilatancy stage, the relationship between normalized permeability and volumetric strain was linear at low unloading rates and nonlinear at high unloading rates. The linear/nonlinear relationship between them can directly affect the temporality of respective mutation, so as to guide the prevention of geological disasters at different excavations rates.


2018 ◽  
Vol 126 (3) ◽  
pp. 701-712 ◽  
Author(s):  
Qingyang Yu ◽  
Zhenxue Dai ◽  
Zhien Zhang ◽  
Mohamad Reza Soltanian ◽  
Shangxian Yin

Sign in / Sign up

Export Citation Format

Share Document