somatic coliphage
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 3)

2020 ◽  
Vol 12 (3) ◽  
pp. 240-249
Author(s):  
JaeYoon Lee ◽  
SungJun Park ◽  
Cheonghoon Lee ◽  
Kyuseon Cho ◽  
Yong Seok Jeong ◽  
...  

2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Luz Chacón ◽  
Kenia Barrantes ◽  
Carolina Santamaría-Ulloa ◽  
Melissa Solano ◽  
Liliana Reyes ◽  
...  

ABSTRACT Effective wastewater management is crucial to ensure the safety of water reuse projects and effluent discharge into surface waters. Multiple studies have demonstrated that municipal wastewater treatment with conventional activated sludge processes is inefficient for the removal of a wide spectrum of viruses in sewage. In this study, a well-accepted statistical approach was used to investigate the relationship between viral indicators and human enteric viruses during wastewater treatment in a resource-limited region. Influent and effluent samples from five urban wastewater treatment plants (WWTPs) in Costa Rica were analyzed for somatic coliphage and human enterovirus, hepatitis A virus, norovirus genotypes I and II, and rotavirus. All WWTPs provide primary treatment followed by conventional activated sludge treatment prior to discharge into surface waters that are indirectly used for agricultural irrigation. The results revealed a statistically significant relationship between the detection of at least one of the five human enteric viruses and somatic coliphage. Multiple logistic regression and receiver operating characteristic curve analysis identified a threshold of 3.0 × 103 (3.5 log10) somatic coliphage PFU per 100 ml, which corresponded to an increased likelihood of encountering enteric viruses above the limit of detection (>1.83 × 102 virus targets/100 ml). Additionally, quantitative microbial risk assessment was executed for farmers indirectly reusing WWTP effluent that met the proposed threshold. The resulting estimated median cumulative annual disease burden complied with World Health Organization recommendations. Future studies are needed to validate the proposed threshold for use in Costa Rica and other regions. IMPORTANCE Effective wastewater management is crucial to ensure safe direct and indirect water reuse; nevertheless, few countries have adopted the virus log reduction value management approach established by the World Health Organization. In this study, we investigated an alternative and/or complementary approach to the virus log reduction value framework for the indirect reuse of activated sludge-treated wastewater effluent. Specifically, we employed a well-accepted statistical approach to identify a statistically sound somatic coliphage threshold value which corresponded to an increased likelihood of human enteric virus detection. This study demonstrates an alternative approach to the virus log reduction value framework which can be applied to improve wastewater reuse practices and effluent management.


2020 ◽  
Vol 6 (1) ◽  
pp. 197-209 ◽  
Author(s):  
Abdulrahman H. Hassaballah ◽  
Tanmay Bhatt ◽  
Jeremy Nyitrai ◽  
Ning Dai ◽  
Lauren Sassoubre

Wastewater disinfection is important to protect human and ecosystem health.


2019 ◽  
Vol 5 (8) ◽  
pp. 1453-1463 ◽  
Author(s):  
Abdulrahman H. Hassaballah ◽  
Jeremy Nyitrai ◽  
Christine H. Hart ◽  
Ning Dai ◽  
Lauren M. Sassoubre

At the pilot-scale, peracetic acid effectively inactivates fecal coliforms,E. coliandEnterococcusspp. in secondary and tertiary treated wastewater. The addition of UV to PAA treatment increases inactivation of somatic coliphage.


2016 ◽  
Vol 8 (3) ◽  
pp. 221-226 ◽  
Author(s):  
Faith E. Bartz ◽  
Domonique Watson Hodge ◽  
Norma Heredia ◽  
Anna Fabiszewski de Aceituno ◽  
Luisa Solís ◽  
...  

2011 ◽  
Vol 74 (11) ◽  
pp. 1840-1846 ◽  
Author(s):  
DORIS H. D'SOUZA ◽  
XIAOWEI SU ◽  
FEDERICO HARTE

With the increasing global spread of human noroviral infections and the emergence of highly virulent noroviral strains, novel inactivation methods are needed to control foodborne outbreaks. High pressure homogenization (HPH) is a novel method that can be applied for foodborne virus reduction in fluids being continuously processed. Our objective in the present study was to compare the titer reduction by HPH between feline calicivirus strain F9 (FCV-F9) and murine norovirus 1 (MNV-1) as surrogates for human noroviruses, and MS2 (single-stranded F-RNA coliphage) and somatic coliphage ϕX174 (single-stranded DNA) as indicators of fecal contamination. Duplicate experiments with each virus in phosphate-buffered saline were carried out with homogenization pressures of 0, 100, 200, 250, and 300 MPa, with exposure temperatures of 24, 46, 63, 70, and 75°C, respectively, for <2 s. FCV-F9 was found highly susceptible to HPH treatment pressures of 300 MPa, with a reduction of >4.95 log PFU/ml. Lower pressures of 250, 200, and 100 MPa resulted in reductions of 1.61, 0.60, and 0.18 log PFU/ml of FCV-F9, respectively, while MNV-1 was not reduced at these lower pressures. Coliphage ϕX174 showed no significant reduction at 300 MPa or lower homogenization pressures in comparison with MS2, which did show 3.3-log PFU/ml reduction at 300 MPa. Future studies using juices for industrial application of HPH to determine microbial inactivation with simultaneous retention of sensory and nutritional value of foods are needed.


Soil Research ◽  
2011 ◽  
Vol 49 (3) ◽  
pp. 270 ◽  
Author(s):  
Jackie Aislabie ◽  
Malcolm McLeod ◽  
Janine Ryburn ◽  
Alexandra McGill ◽  
Daniel Thornburrow

The ability of soil to function as a barrier between microbial pathogens in wastes and groundwater following application of animal wastes is dependent on soil structure. We irrigated soil lysimeters with dairy shed effluent at intervals of 3–4 months and monitored microbial indicators (somatic coliphage, faecal enterococci, Escherichia coli) in soil core leachates for 1 year. The lysimeters were maintained in a lysimeter facility under natural soil temperature and moisture regimes. Microbial indicators were rapidly transported to depth in well-structured Netherton clay loam soil. Peak concentrations of E. coli and somatic coliphage were detected immediately following dairy shed effluent application to Netherton clay loam soil, and E. coli continued to leach from the soil following rainfall. In contrast, microbial indicators were rarely detected in leachates from fine-structured Manawatu sandy loam soil. Potential for leaching was dependent on soil moisture conditions in Manawatu soil but not Netherton soil, where leaching occurred regardless. Dye studies confirmed that E. coli can be transported to depth by flow through continuous macropores in Netherton soils. However, in the main E. coli was retained in topsoil of Netherton and Manawatu soil.


Sign in / Sign up

Export Citation Format

Share Document