foodborne outbreaks
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 102)

H-INDEX

42
(FIVE YEARS 6)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Azumah Ayamah ◽  
Augustina Angelina Sylverken ◽  
Linda Aurelia Ofori

The demand for ready-to-eat (RTE) foods is handy to busy urban dwellers. Handling, processing, and selling are known to contaminate these foods and cause foodborne outbreaks. This study assessed a load of S. aureus and E. coli in khebabs (beef, chevon, and gizzard) sold on the KNUST campus and its environs and how resistant they are to clinically relevant antimicrobial agents. Thirty-six (36) khebab samples were purchased from vendors at Kotei, Ayeduase, Kentinkrono, Boadi, KNUST campus, and Ayigya. They were analyzed for S. aureus and E. coli and their resistance to clinically relevant antimicrobial agents checked using standard methods. S. aureus and E. coli load ranged from 4.09 to 5.96 CFU/g and 1.79 to 6.12 MPN/g in beef, 4.02 to 6.01 CFU/g and 1.99 to 4.44 MPN/g in chevon, and 5.37 to 6.18 CFU/g and 1.79 to 6.10 MPN/g in gizzard khebabs in the different locations. E. coli (n = 27) were multiresistant to ampicillin, tetracycline, gentamicin, cefuroxime, ceftriaxone, cefotaxime, and cotrimoxazole (51.85%) and susceptible to chloramphenicol (100%). S. aureus (n = 36) isolates were multiresistant to penicillin, tetracycline, flucloxacillin, cefuroxime, ampicillin (97.22%), erythromycin (75%), cotrimoxazole (86.11%), and gentamicin (69.44%). It can therefore be concluded that the majority of khebabs from the KNUST campus and its environs were contaminated with S. aureus and E. coli above the acceptable standard limits (≤4 log10 CFU/g and ˂2 log10MPN/g, respectively). Also, the S. aureus and E. coli isolated were multiresistant to the antibiotics tested and could be a medium for the transmission of antibiotic-resistant bacteria and therefore expose consumers to a high risk of contracting foodborne infections with drug-resistant strains.


Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Nikolaus Schreiber ◽  
Gerald Hackl ◽  
Alexander C. Reisinger ◽  
Ines Zollner-Schwetz ◽  
Kathrin Eller ◽  
...  

Bacillus cereus foodborne intoxications and toxicoinfections are on a rise. Usually, symptoms are self-limiting but occasionally hospitalization is necessary. Severe intoxications with the emetic Bacillus cereus toxin cereulide, which is notably resistant heat and acid during cooking, can cause acute liver failure and encephalopathy. We here present a case series of food poisonings in five immunocompetent adults after ingestion of fried rice balls, which were massively contaminated with Bacillus cereus. The patients developed a broad clinical spectrum, ranging from emesis and diarrhoea to life-threatening acute liver failure and acute tubular necrosis of the kidney in the index patient. In the left-over rice ball, we detected 8 × 106Bacillus cereus colony-forming units/g foodstuff, and cereulide in a concentration of 37 μg/g foodstuff, which is one of the highest cereulide toxin contaminations reported so far from foodborne outbreaks. This report emphasizes the potential biological hazard of contaminated rice meals that are not freshly prepared. It exemplifies the necessity of a multidisciplinary approach in cases of Bacillus cereus associated food poisonings to rapidly establish the diagnosis, to closely monitor critically ill patients, and to provide supportive measures for acute liver failure and—whenever necessary—urgent liver transplantation.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2972
Author(s):  
Tareq M. Osaili ◽  
Anas A. Al-Nabulsi ◽  
Yasmeen M. Al Sheikh ◽  
Akram R. Alaboudi ◽  
Amin N. Olaimat ◽  
...  

Tahini (sesame paste) is a traditional food. Numerous foodborne outbreaks have been associated with it. This study aimed to (i) explore the efficiency of 2450 MHz microwave heating at 220, 330, 440, 550, and 660 W on the inactivation of Salmonella spp, Escherichia coli O157:H7, and Listeria monocytogenes in tahini; (ii) determine the impact of desiccation and starvation stresses on pathogen survival; (iii) assess the impact of microwave heating on the physicochemical characteristics of tahini. The inoculated microorganisms in tahini were reduced with higher microwave power levels (p < 0.05) and longer exposure times. The D-values of unstressed Salmonella spp., Escherichia coli O157:H7, and L. monocytogenes ranged from 6.18 to 0.50 min, 6.08 to 0.50 min, and 4.69 to 0.48 min, respectively, at power levels of 220 to 660 W, with z-values of 410, 440, and 460 W, respectively. Generally, desiccation and starvation stress levels prior to heating increased microbial resistance to heat treatment. Microwave heating did not affect acid, peroxide, p-anisidine, or color values of tahini up to 90 °C. These findings reveal microwave heating as a potential method for lowering the risk of Salmonella spp., E. coli O157:H7 and L. monocytogenes in tahini with no compromise on quality.


2021 ◽  
Vol 9 (12) ◽  
pp. 2464
Author(s):  
Maira Napoleoni ◽  
Laura Villa ◽  
Lisa Barco ◽  
Luca Busani ◽  
Veronica Cibin ◽  
...  

Salmonellosis is the second most commonly reported gastrointestinal infection in humans after campylobacteriosis, and an important cause of foodborne outbreaks in the EU/EEA. The vast majority (72.4%) of the salmonellosis foodborne outbreaks reported in EU in 2019 were caused by Salmonella Enteritidis, even if their total number due to this serovar decreased. In spring 2020, a foodborne outbreak of S. Enteritidis occurred in the Marche region (Central Italy), involving 85 people. The common exposure source was a cheese, pecorino “primo sale”, produced with raw sheep milk. The cheese batches were produced by two local dairies, with a livestock production facility, also including a sheep farm, being part of one dairy. Bacteriological analysis of samples collected allowed the detection of S. Enteritidis in animal faeces, environmental samples, raw-milk bulk tanks and milk taken from single animals. These data confirm that, despite the scarce scientific evidence, S. Enteritidis can infect sheep and be shed into the animals’ milk. Hence, this is a real risk for public health when unpasteurized milk is used in production of such cheese. The present paper describes the results of the investigations conducted to clarify this outbreak.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dandan Tao ◽  
Dongyu Zhang ◽  
Ruofan Hu ◽  
Elke Rundensteiner ◽  
Hao Feng

AbstractFoodborne outbreaks are a serious but preventable threat to public health that often lead to illness, loss of life, significant economic loss, and the erosion of consumer confidence. Understanding how consumers respond when interacting with foods, as well as extracting information from posts on social media may provide new means of reducing the risks and curtailing the outbreaks. In recent years, Twitter has been employed as a new tool for identifying unreported foodborne illnesses. However, there is a huge gap between the identification of sporadic illnesses and the early detection of a potential outbreak. In this work, the dual-task BERTweet model was developed to identify unreported foodborne illnesses and extract foodborne-illness-related entities from Twitter. Unlike previous methods, our model leveraged the mutually beneficial relationships between the two tasks. The results showed that the F1-score of relevance prediction was 0.87, and the F1-score of entity extraction was 0.61. Key elements such as time, location, and food detected from sentences indicating foodborne illnesses were used to analyze potential foodborne outbreaks in massive historical tweets. A case study on tweets indicating foodborne illnesses showed that the discovered trend is consistent with the true outbreaks that occurred during the same period.


2021 ◽  
Vol 15 (10) ◽  
pp. 535-542
Author(s):  
Mirzababaei Mehrnaz ◽  
Mehdi Soltan Dallal Mohammad ◽  
Mazaheri Nezhad Fard Ramin ◽  
Masoumi Asl Hossein ◽  
Pourmoradian Mahdieh

2021 ◽  
Vol 10 (43) ◽  
Author(s):  
Hui Huang ◽  
Yanwen Wang ◽  
Chunxu Wang ◽  
Yong Tang ◽  
Lili He ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) is one of the primary pathogenic contaminants of foods, contributing to several foodborne outbreaks in recent years. Here, we report the complete genome sequences of two non-O157 STEC strains isolated from an outbreak of diarrhea in the city of Guilin, Guangxi Zhuang Autonomous Region, China.


Author(s):  
Craig Billington ◽  
Joanne M. Kingsbury ◽  
Lucia Rivas

Advancements in next-generation sequencing technology have dramatically reduced the cost and increased the ease of microbial whole-genome sequencing. This is revolutionizing the identification and analysis of foodborne microbial pathogens, facilitating expedited detection and mitigation of foodborne outbreaks, improving public health outcomes, and limiting costly recalls. However, this approach is still anchored in traditional laboratory practice involving the selection and culture of a single isolate. Metagenomic-based approaches, including metabarcoding, shotgun and long-read metagenomics, comprise the next disruptive revolution in food safety diagnostics and offer the potential to directly identify entire microbial communities in a single food, ingredient, or environmental sample. In this review, metagenomic-based approaches are introduced and placed within the context of conventional detection and diagnostic techniques, and essential considerations for undertaking metagenomic assays and data analysis are described. Recent applications of the use of metagenomics for food safety are discussed, alongside current limitations and knowledge gaps, and new opportunities arising from the use of this technology.


2021 ◽  
Vol 26 (41) ◽  
Author(s):  
Idesbald Boone ◽  
Bettina Rosner ◽  
Raskit Lachmann ◽  
Michele Luca D'Errico ◽  
Luigi Iannetti ◽  
...  

Background Healthcare-associated foodborne outbreaks (HA-FBO) may have severe consequences, especially in vulnerable groups. Aim The aim was to describe the current state of HA-FBO and propose public health recommendations for prevention. Methods We searched PubMed, the Outbreak Database (Charité, University Medicine Berlin), and hand-searched reference lists for HA-FBO with outbreak onset between 2001 and 2018 from Organisation for Economic Co-operation and Development (OECD) countries and HA-FBO (2012–2018) from the German surveillance system. Additionally, data from the European Food Safety Authority were analysed. Results The literature search retrieved 57 HA-FBO from 16 OECD countries, primarily in the US (n = 11), Germany (n = 11) and the United Kingdom (n = 9). In addition, 28 HA-FBO were retrieved from the German surveillance system. Based on the number of outbreaks, the top three pathogens associated with the overall 85 HA-FBO were Salmonella (n = 24), norovirus (n = 22) and Listeria monocytogenes (n = 19). Based on the number of deaths, L. monocytogenes was the main pathogen causing HA-FBO. Frequently reported implicated foods were ‘mixed foods’ (n = 16), ‘vegetables and fruits’ (n = 15) and ‘meat and meat products’ (n = 10). Consumption of high-risk food by vulnerable patients, inadequate time-temperature control, insufficient kitchen hygiene and food hygiene and carriers of pathogens among food handlers were reported as reasons for HA-FBO. Conclusion To prevent HA-FBO, the supply of high-risk food to vulnerable people should be avoided. Well working outbreak surveillance facilitates early detection and requires close interdisciplinary collaboration and exchange of information between hospitals, food safety and public health authorities.


2021 ◽  
Vol 4 (2) ◽  
pp. 166
Author(s):  
Ndaindila Haindongo ◽  
Amara Anyogu ◽  
Osmond Ekwebelem ◽  
Christian Anumudu ◽  
Helen Onyeaka

Biofilms are a significant concern in the food industry because of their potential to enhance bacterial survival and cause foodborne outbreaks. Escherichia coli (E. coli) is among the leading pathogens responsible for foodborne outbreaks and this can be attributed to its ability to form biofilms in food containers and food preparatory surfaces. The purpose of this study was to investigate the antibacterial and antibiofilm properties of garlic, ginger and mint and their potential to inhibit E.coli and biofilm formation. Disc diffusion assays and 96-well plate crystal violet-based methods were used to achieve these objectives. The plant extracts were diluted from 1 mg/ml to 0.1 mg/ml and incubated 25°C and 37°C to investigate the antimicrobial and antibiofilm effects on E. coli. The findings of this study showed that low temperatures induced the formation of E. coli biofilms and all tested extracts contain a broad spectrum of antibacterial and antibiofilm properties. This study provided new insights on the combined antimicrobial and antibiofilm properties of garlic, ginger and mint against planktonic cells and biofilms of E. coli MG 1655 and highlight the potential use of these extracts in the food industry to prevent biofilm formation by E. coli. 


Sign in / Sign up

Export Citation Format

Share Document