error energy
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 19 (1) ◽  
pp. 25-39
Author(s):  
K. OKOKPUJIE ◽  
A. ABAYOMI-ALLI ◽  
O. ABAYOMI-ALLI ◽  
M. ODUSAMI ◽  
I. P. OKOKPUJIE ◽  
...  

The measurement of the energy consumed by residential and commercial buildings by utility provider is important in billing, control, and monitoring of the usage of energy. Traditional metering techniques used for the measurement of energy are not convenient and is prone to different forms of irregularities. These irregularities include meter failure, meter tampering, inaccuracies in billing due to human error, energy theft, and loss of revenue due to corruption, etc. This research study proposed the design and construction of a microcontroller-based electric energy metering system using the Global System for Mobile communication (GSM) network. This system provides a solution to the irregularities posed by the traditional metering technique by allowing the utility provider have access to remote monitoring capabilities, full control over consumer load, and remote power disconnection in the case of energy theft. Proteus simulation software was used to model the system hardware and the software was obtained by using embedded C programming and visual basic. It was observed that the system could remotely take accurate energy readings, provided full control over consumer loads and execute remote disconnection in case of energy theft. The system provides high performance and high accuracy in power monitoring and power management.    


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Rohit Rana ◽  
Prerna Gaur ◽  
Vijyant Agarwal ◽  
Harish Parthasarathy

Abstract In this paper, a novel statistical application of large deviation principle (LDP) to the robot trajectory tracking problem is presented. The exit probability of the trajectory from stability zone is evaluated, in the presence of small-amplitude Gaussian and Poisson noise. Afterward, the limit of the partition function for the average tracking error energy is derived by solving a fourth-order system of Euler–Lagrange equations. Stability and computational complexity of the proposed approach is investigated to show the superiority over the Lyapunov method. Finally, the proposed algorithm is validated by Monte Carlo simulations and on the commercially available Omni bundleTM robot.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1175
Author(s):  
Uroš Lotrič ◽  
Ratko Pilipović ◽  
Patricio Bulić

Multiplication is an essential image processing operation commonly implemented in hardware DSP cores. To improve DSP cores’ area, speed, or energy efficiency, we can approximate multiplication. We present an approximate multiplier that generates two partial products using hybrid radix-4 and logarithmic encoding of the input operands. It uses the exact radix-4 encoding to generate the partial product from the three most significant bits and the logarithmic approximation with mantissa trimming to approximate the partial product from the remaining least-significant bits. The proposed multiplier fills the gap between highly accurate approximate non-logarithmic multipliers with a complex design and less accurate approximate logarithmic multipliers with a more straightforward design. We evaluated the multiplier’s efficiency in terms of error, energy (power-delay-product) and area utilisation using NanGate 45 nm. The experimental results show that the proposed multiplier exhibits good area utilisation and energy consumption and behaves well in image processing applications.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 234 ◽  
Author(s):  
Xiaoran Zhuang ◽  
Naigeng Wu ◽  
Jinzhong Min ◽  
Yuan Xu

This study investigates the practical predictability of two simulated mesoscale convective systems (MCS1 and MCS2) within a state-of-the-art convection-allowing ensemble forecast system. The two MCSs are both controlled by the synoptic Meiyu-front but differ in mesoscale orographic forcing. An observation system simulation experiment (OSSE) setup is first built, which includes flow-dependent multiple-scale initial and lateral boundary perturbations and a 12 h 30-member ensemble forecast is thereby created. In combination with the difference total energy, the decorrelation scale and the ensemble sensitivity analysis, both forecast error evolution, precipitation uncertainties and meteorological sensitivity that describe the practical predictability are assessed. The results show large variabilities of precipitation forecasts among ensemble members, indicative of the practical predictability limit. The study of forecast error evolution shows that the error energy in the MCS1 region in which the convection is blocked by the Dabie Mountains exhibits a simultaneous peak pattern for all spatial scales at around 6 h due to strong moist convection. On the other hand, when large-scale flow plays a more important role, the forecast error energy in the MCS2 region exhibits a stepwise increase with increasing spatial scale. As a result of error energy growth, the precipitation uncertainties evolve from small scales and gradually transfer to larger scales, implying a strong relationship between error growth and precipitation across spatial scales, thus explaining the great precipitation variability within ensemble members. These results suggest the additional forcing brought by the Dabie Mountains could regulate the predictability of Meiyu-frontal convection, which calls for a targeted perturbation design in convection-allowing ensemble forecast systems with respect to different forcing mechanisms.


Robotica ◽  
2020 ◽  
Vol 38 (12) ◽  
pp. 2138-2150
Author(s):  
Amin Talaeizadeh ◽  
Mahmoodreza Forootan ◽  
Mehdi Zabihi ◽  
Hossein Nejat Pishkenari

SUMMARYDynamic modeling is a fundamental step in analyzing the movement of any mechanical system. Methods for dynamical modeling of constrained systems have been widely developed to improve the accuracy and minimize computational cost during simulations. The necessity to satisfy constraint equations as well as the equations of motion makes it more critical to use numerical techniques that are successful in decreasing the number of computational operations and numerical errors for complex dynamical systems. In this study, performance of a variant of Kane’s method compared to six different techniques based on the Lagrange’s equations is shown. To evaluate the performance of the mentioned methods, snake-like robot dynamics is considered and different aspects such as the number of the most time-consuming computational operations, constraint error, energy error, and CPU time assigned to each method are compared. The simulation results demonstrate the superiority of the variant of Kane’s method concerning the other ones.


Author(s):  
Jennifer L. Bonniwell ◽  
Susan C. Schneider ◽  
Edwin E. Yaz

This work elucidates another theoretical property of the ubiquitous extended Kalman filter by analyzing the energy gain of the continuous-time extended Kalman filter used as a nonlinear observer in the presence of finite-energy disturbances. The analysis provides a bound on the ratio of estimation error energy to disturbance energy, which shows that the extended Kalman filter inherently has the H∞-property along with being the locally optimal minimum variance estimator. A special case of this result is also shown to be the H2-property of the extended Kalman filter.


2016 ◽  
Vol 40 (2) ◽  
pp. 193-206 ◽  
Author(s):  
Erik C. Johnson ◽  
Douglas L. Jones ◽  
Rama Ratnam

Sign in / Sign up

Export Citation Format

Share Document