The Duration and Geodynamics of Formation of the Angara–Vitim Batholith: Results of U–Pb Isotope (LA-ICP-MS) Dating of Magmatic and Detrital Zircons

2021 ◽  
Vol 62 (12) ◽  
pp. 1331-1349
Author(s):  
V.B. Khubanov ◽  
A.A. Tsygankov ◽  
G.N. Burmakina

Abstract —We present results of U–Pb (LA-ICP-MS) dating of detrital zircons from the alluvial deposits of the Angarakan River (North Muya Ridge, northern Baikal region), whose drainage basin is composed mainly of granitoids of the Barguzin Complex, typomorphic for the late Paleozoic Angara–Vitim batholith (AVB). Three age clusters with peaks at 728, 423, and 314 Ma have been identified in the studied population of detrital zircons. It is shown that small outliers of igneous and metamorphic rocks, probably similar to the large AVB roof pendants mapped beyond the drainage basin, are the source of Neoproterozoic and early Paleozoic zircons. The late Paleozoic cluster comprises two close peaks at 314 and 28 Ma, which totally “overlap” with the time of the AVB formation and mark a granitoid source of the zircons. The results of detrital-zircon geochronology, together with the data on bedrocks, point to the prolonged (~40 Myr) formation of the AVB, but the intensity of magmatism during this period calls for additional study. Based on the analysis of published geological, geochemical, and geochronological data, we assume that the AVB resulted from the plume–lithosphere interaction that began in the compression setting and gave way to extension 305–300 Ma (the Carboniferous–Permian boundary), which caused replacement of “crustal” granitoids by granitoids formed from a mixed mantle–crustal source.

2020 ◽  
Author(s):  
Iulian Pojar ◽  
Tomas N. Capaldi ◽  
Cornel Olariu ◽  
Mihaela C. Melinte - Dobrinescu

<p>The Danube River with a length of 2,800 km is the second longest European river after the Volga. As the Danube River crosses multiple sedimentary basins (Vienna, Pannonian, Dacian) its drainage basin covers a variety of geological units of the Alps, Carpathians, Dinarides and Balkans; hence, its tributaries contain a large sedimentary diversity. Detrital zircon (DZ) studies are appropriate for understanding the pattern of orogenic erosion, sediment routing and mixing of different signals during the transport and preservation of the river sediments. This work presents U-Pb geochronology data obtained from modern sediments of seven tributaries in the Lower Danube: Cerna, Topolniţa, Jiu, Olt, Argeş, Ialomiţa and Siret. Additionally, 1 sample was collected from the Danube Delta front.</p><p>The studied samples exhibit several main peaks, which are from oldest to newest: (i) Cambro-Ordovician, linked to the backarc basins and island arcs of Peri-Gondwana subduction (600 – 440 Ma); (ii) Lower to Middle Carboniferous from Variscan magmatic and metamorphic rocks (350 – 320 Ma), showing significant values in most analysed samples; iii) Alpine, younger than 100 Ma, most probably related to the Southern Carpathian Late Cretaceous Banatitic arc and to the Neogene volcanism of the Eastern Carpathians and Apuseni Mountains. The obtained ages on the DZ geochronology show downstream mixing, similarly to recent published data focused on the sediment provenance studies (Balintoni et al., 2014; Ducea et al., 2018).</p><p>For the Lower Danube western investigated samples, our results show as main source the metamorphic rocks characteristic for the Upper and Lower Danubian tectonic units of the Southern Carpathians (ca. 300 Ma). Some larger tributaries in the eastern (downstream) Lower Danube show temporal disperse peaks on the DZ geochronology, feature probably reflecting successive processes of recycling. Notably, the most representative sources of DZ identified in the samples from easternmost Lower Danube tributaries are the Varistic metamorphites.</p><p>The results suggests that the sediments of the western studied tributaries, characterized by small drainage basin, are mainly composed by igneous and metamorphic rocks. The eastern tributaries with larger drainage basins and therefore a much-varied type of rocks show a more complex DZ distribution; probably, only a small amount of DZ grains indicates the “primary” source rock. The sample from the Danube Delta Front yielded a wide DZ distribution, mirroring the huge amount of sedimentary material from various sources belonging to all basins crossed by the Danube.</p><p>The financial support for this paper was provided by the Romanian Ministry of Research and Innovation, through the Programme Development of the National System of Research – Institutional Performance, Project of Excellence for Rivers-Deltas-Sea systems No. 8PFE/2018.</p><p>References:</p><p>Balintoni, I., Balica, C., Ducea, M.N., Hann, H.P. (2014). Peri-Gondwanan terranes in the Romanian Carpathians: A review of their spatial distribution, origin, provenance and evolution. Geoscience Frontiers 5: 395–411.</p><p>Ducea, M.N., Giosan, L., Carter, A., Balica, C., Stoica, A.M., Roban, R.D., Balintoni, I., Filip, D., Petrescu, L. (2018). U-Pb detrital zircon geochronology of the Lower Danube and its tributaries; implications for the geology of the Carpathians. Geochemistry, Geophysics, Geosystems, 19(9), 3208-3223.</p>


2020 ◽  
Author(s):  
C.R. Fasulo ◽  
et al.

<div>Supplemental Data. (A) U-Pb analytical results from detrital zircons from the Nutzotin, Wrangell Mountains, and Wellesly basins. (B) Lu-Hf analytical results from detrital zircons from the Nutzotin and Wellesly basins. <br></div>


2021 ◽  
Author(s):  
Luca Zurli ◽  
Gianluca Cornamusini

Raw laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) analysis and detrital zircon grain shape characterization of the late Paleozoic diamictite samples from Victoria Land, Antarctica.


2018 ◽  
Vol 306 ◽  
pp. 189-208 ◽  
Author(s):  
Daianne Francis Höfig ◽  
Juliana Charão Marques ◽  
Miguel Angelo Stipp Basei ◽  
Ronei Osório Giusti ◽  
Cassiano Kohlrausch ◽  
...  

2007 ◽  
Vol 44 (12) ◽  
pp. 1675-1693 ◽  
Author(s):  
Y Lemieux ◽  
R I Thompson ◽  
P Erdmer ◽  
A Simonetti ◽  
R A Creaser

The Kootenay Arc has been interpreted as the western limit of autochthonous continental margin strata, west of which occur Paleozoic to Mesozoic rocks of uncertain paleogeographic origin. Recent mapping has demonstrated stratigraphic linkage between the Kootenay Arc strata and rocks farther west. A U–Pb study of detrital zircons using laser ablation – multicollector – inductively coupled plasma – mass spectrometry (LA–MC–ICP–MS) was undertaken in the upper succession of the Monashee complex mantling gneiss and in mid-Paleozoic strata of the Chase Formation exposed in the northern Kootenay Arc area and adjacent outboard strata. The predominance of >1.75 Ga zircon matches well with basement domains of the western buried North American craton and indicates that most of the grains were derived from a source of North American affinity. Zircon between 1.00 and 1.30 Ga demonstrates a Neoproterozoic source of possible “Grenville” affinity. Additional populations in the Chase Formation are mid-Paleozoic, Ediacaran, 800–1000 Ma, and 1400–1750 Ma. We interpret them to have been derived from exposed sources of Proterozoic continental crust and (or) proximal late Neoproterozoic and middle Paleozoic magmatic sources. The investigated Proterozoic and Paleozoic successions confirm sedimentologic and depositional relationships with the ancestral North American margin, and as such are interpreted to represent outboard extensions of the Cordilleran miogeoclinal succession.


2006 ◽  
Vol 11 ◽  
pp. 87-100 ◽  
Author(s):  
Kristine Thrane ◽  
James N. Connelly

The Kangaatsiaq–Qasigiannguit region in the northern part of the Palaeoproterozoic Nagssugtoqidian orogen of West Greenland consists of poly-deformed orthogneisses and minor occurrences of interleaved, discontinuous supracrustal belts. Laser ablation ICP-MS 207Pb/206Pb analyses of detrital zircons from four metasedimentary rocks (supplemented by ion probe analysis of one sample) and igneous zircons from six granitoid rocks cutting metasedimentary units indicate that the supracrustal rocks in the Kangaatsiaq–Qasigiannguit (Christianshåb) region are predominantly Archaean in age. Four occurrences of metasedimentary rocks are clearly Archaean, two have equivocal ages, and only one metasedimentary unit, from within the Naternaq (Lersletten) supracrustal belt, is demonstrably Palaeoproterozoic and readily defines a large fold complex of this age at Naternaq. The 2.9–2.8 Ga ages of detrital Archaean grains are compatible with derivation from the local basement orthogneisses within the Nagssugtoqidian orogen. The detrital age patterns are similar to those of metasediments within the central Nagssugtoqidian orogen but distinct from age patterns in metasediments of the Rinkian belt to the north, where there is an additional component of pre-2.9 Ga zircons. Synkinematic intrusive granitoid rocks constrain the ages of some Archaean deformation at 2748 ± 19 Ma and some Palaeoproterozoic deformation at 1837 ± 12 Ma.


Sign in / Sign up

Export Citation Format

Share Document