silicone model
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 42 ◽  
pp. 107-112
Author(s):  
Daniela Coman ◽  
Lucian Gheorghe Gruionu

Needle insertion in biological tissue has attracted considerable attention due to its application in minimally invasive procedures such as laparoscopy or transcutaneous biopsy. In this paper the force of the Veress needle insertion into the abdominal wall and the von Mises stress were studied, demonstrating the ability of finite element models to provide additional understanding of the processes taking place. Veress needle insertion force may cause complications during surgery, the most common being vascular lesions, thus affecting the precision and duration of surgery assisted by a portable abdominal insufflation device. This study was the first step in developing a force feedback for needle insertion into the abdominal wall assisted by a portable abdominal insufflation device. The CAD model of the prototype of a portable abdominal insufflation device was made. Then the prototype of a portable abdominal insufflation device was developed. For testing purposes an artificial silicone model was made. The paper also includes the experimental results obtained by measuring the maximum pressure inside the artificial silicone model after the penetration of the wall.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246701
Author(s):  
Philip C. Wiener ◽  
Ahmed Darwish ◽  
Evan Friend ◽  
Lyes Kadem ◽  
Gregg S. Pressman

Introduction Study aims were to compare hemodynamics and viscous energy dissipation (VED) in 3D printed mitral valves–one replicating a normal valve and the other a valve with severe mitral annular calcification (MAC). Patients with severe MAC develop transmitral gradients, without the commissural fusion typifying rheumatic mitral stenosis (MS), and may have symptoms similar to classical MS. A proposed mechanism relates to VED due to disturbed blood flow through the diseased valve into the ventricle. Methods A silicone model of a normal mitral valve (MV) was created using a transesophageal echocardiography dataset. 3D printed calcium phantoms were incorporated into a second valve model to replicate severe MAC. The synthetic MVs were tested in a left heart duplicator under rest and exercise conditions. Fine particles were suspended in a water/glycerol blood analogue for particle image velocimetry calculation of VED. Results Catheter mean transmitral gradients were slightly higher in the MAC valve compared to the normal MV, both at rest (3.2 vs. 1.3 mm Hg) and with exercise (5.9 vs. 5.0 mm Hg); Doppler gradients were 2.7 vs. 2.1 mm Hg at rest and 9.9 vs 8.2 mm Hg with exercise. VED was similar between the two valves at rest. During exercise, VED increased to a greater extent for the MAC valve (240%) versus the normal valve (127%). Conclusion MAC MS is associated with slightly increased transmitral gradients but markedly increased VED during exercise. These energy losses may contribute to the exercise intolerance and exertional dyspnea present in MAC patients.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hannah Riedle ◽  
Ahmed Ghazy ◽  
Anna Seufert ◽  
Vera Seitz ◽  
Bernhard Dorweiler ◽  
...  

Purpose The purpose of this study is the generation of a thorough generic heart model optimized for direct 3D printing with silicone elastomers. Design/methodology/approach The base of the model design is segmentation of CT data, followed by a generic adaption and a constructive enhancement. The model is 3D printed with silicone. An evaluation of the physical model gives indications about its benefits and weaknesses. Findings The results show the feasibility of a generic design while maintaining anatomical correctness and the benefit of the generic approach to quickly derive a multiplicity of healthy and pathological versions from one single model. The material properties of the silicone model are sufficient for simulation, but the results of the evaluation indicate possible improvements, as for most anatomical features, the used silicone is too hard and too stretchable. Originality/value Previous developments mostly focus on patient-specific heart models. In contrast, this study sets out to explore the possibility and benefits of a generic approach. Standardized validated models would allow comparability in surgical simulation.


2020 ◽  
Vol 6 (3) ◽  
pp. 78-81
Author(s):  
Michael Stiehm ◽  
Christoph Brandt-Wunderlich ◽  
Stefan Siewert ◽  
Klaus-Peter Schmitz ◽  
Niels Grabow ◽  
...  

AbstractModern technologies and methods such as computer simulation, so-called in silico methods, foster the development of medical devices. For accelerating the uptake of computer simulations and to increase credibility and reliability the U.S. Food and Drug Administration organized an inter-laboratory round robin study of a generic nozzle geometry. In preparation of own bench testing experiment using Particle Image Velocimetry, a custom made silicone nozzle was manufactured. By using in silico computational fluid dynamics method the influence of in vitro imperfections, such as inflow variations and geometrical deviations, on the flow field were evaluated. Based on literature the throat Reynolds number was varied Rethroat = 500 ± 50. It could be shown that the flow field errors resulted from variations of inlet conditions can be largely eliminated by normalizing if the Reynolds number is known. Furthermore, a symmetric imperfection of the silicone model within manufacturing tolerance does not affect the flow as much as an asymmetric failure such as an unintended curvature of the nozzle. In brief, we can conclude that geometrical imperfection of the reference experiment should be considered accordingly to in silico modelling. The question arises, if an asymmetric benchmark for biofluid analysis needs to be established. An eccentric nozzle benchmark could be a suitable case and will be further investigated.


2020 ◽  
Vol 43 (5) ◽  
pp. 621-626
Author(s):  
Osaid Alser ◽  
Gehad Youssef ◽  
Simon Myers ◽  
Ali M. Ghanem

Abstract Background Microsurgery simulation is an important aspect of surgical training. Animal models have been widely used in simulation training, but they have some limitations including ethical restrictions, cost and availability. This has led to the use of synthetic models that can reduce reliance on animals in line with the 3R (refinement, reduction and replacement) principles. The aim of this paper was to evaluate the face validity of Surgitate™ three-in-one (artery, vein and nerve) silicone model. Methods Fourteen candidates performed one end-to-end anastomosis on artery, vein and nerve. The face validity of the vessel was assessed via questionnaires detailing their previous microsurgical experience and their feedback of using this model using the Likert scale. Data management and analysis were performed using IBM SPSS software (25.0). Results Participants tended to value this model in the earlier stages of microsurgical training particularly in the acquisition of basic microsurgical skills. It could be particularly useful in enhancing suturing skills as a replacement or reduction in the use of chicken models. The model has some drawbacks preluding its utilization into more advanced stages of surgical training. Further studies are needed to validate the model using more objective measures. Conclusion We present a novel synthetic model that can be potentially introduced to early stages of microsurgery training. The model would be ideal to meet the 3R principles of the use of animal models and as an alternative to the commonly used synthetic models. Level of evidence: Not ratable.


2019 ◽  
Author(s):  
Chang-Il Kwon ◽  
Yeonsun Shin ◽  
Jaeok Hong ◽  
Minje Im ◽  
Guk Bae Kim ◽  
...  

Abstract Background: ERCP training models are very different in terms of anatomical differences, ethical issues, storage problems, realistic tactile sensation, durability and portability. There is no easy way to select an optimized model for ERCP training. If the ERCP training model could be made as a soft silicone model using 3D printing technique, it would have numerous advantages over the models presented so far. The purpose of this study was to develop an optimized ERCP training model using a 3D printing technique and to try to find ways for implementing various practical techniques. Methods: All organ parts of this model were fabricated using silicone molding techniques with 3D printing. Especially, various anatomy of the ampulla of Vater and common bile duct (CBD) were creatively designed for different diagnostic and therapeutic procedures. In order to manufacture each of the designed organ parts with silicone, a negative part had to be newly designed to produce the molder. The negative molders were 3D printed and then injection molding was applied to obtain organ parts in silicone material. The eight different types of ampulla and CBD were repeatedly utilized and replaced to the main system as a module-type. Results: ERCP training silicone model using 3D technique was semi-permanently used to repeat various ERCP procedures. All ERCP procedures using this model could be observed by real-time fluoroscopic examination as well as endoscopic examination simultaneously. Using different ampulla and CBD modules, basic biliary cannulation, difficult cannulation, stone extraction, mechanical lithotripsy, metal stent insertion, plastic stent insertion, and balloon dilation were successfully and repeatedly achieved. Endoscopic sphincterotomy was also performed on a specialized ampulla using a Vienna sausage. After repeat procedures and trainings, all parts of organs including the ampulla and CBD modules were not markedly damaged or deformed. Conclusions: We made a specialized ERCP training silicon model with 3D printing technique. This model is durable, relatively cheap and easy to make, and thus allows the users to perform various specialized ERCP techniques, which increases its chances of being a good ERCP training model.


2019 ◽  
Author(s):  
Chang-Il Kwon ◽  
Yeonsun Shin ◽  
Jaeok Hong ◽  
Minje Im ◽  
Guk Bae Kim ◽  
...  

Abstract Background: ERCP training models are very different in terms of anatomical differences, ethical issues, storage problems, realistic tactile sensation, durability and portability. There is no easy way to select an optimized model for ERCP training. If the ERCP training model could be made as a soft silicone model using 3D printing technique, it would have numerous advantages over the models presented so far. The purpose of this study was to develop an optimized ERCP training model using a 3D printing technique and to try to find ways for implementing various practical techniques. Methods: All organ parts of this model were fabricated using silicone molding techniques with 3D printing. Especially, various anatomy of the ampulla of Vater and common bile duct (CBD) were creatively designed for different diagnostic and therapeutic procedures. In order to manufacture each of the designed organ parts with silicone, a negative part had to be newly designed to produce the molder. The negative molders were 3D printed and then injection molding was applied to obtain organ parts in silicone material. The eight different types of ampulla and CBD were repeatedly utilized and replaced to the main system as a module-type. Results: ERCP training silicone model using 3D technique was semi-permanently used to repeat various ERCP procedures. All ERCP procedures using this model could be observed by real-time fluoroscopic examination as well as endoscopic examination simultaneously. Using different ampulla and CBD modules, basic biliary cannulation, difficult cannulation, stone extraction, mechanical lithotripsy, metal stent insertion, plastic stent insertion, and balloon dilation were successfully and repeatedly achieved. Endoscopic sphincterotomy was also performed on a specialized ampulla using a Vienna sausage. After repeat procedures and trainings, all parts of organs including the ampulla and CBD modules were not markedly damaged or deformed. Conclusions: We made a specialized ERCP training silicon model with 3D printing technique. This model is durable, relatively cheap and easy to make, and thus allows the users to perform various specialized ERCP techniques, which increases its chances of being a good ERCP training model.


Author(s):  
Antonio Gallarello ◽  
Andrea Palombi ◽  
Giacomo Annio ◽  
Shervanthi Homer-Vanniasinkam ◽  
Elena De Momi ◽  
...  

Abstract Validation of computational models using in vitro phantoms is a nontrivial task, especially in the replication of the mechanical properties of the vessel walls, which varies with age and pathophysiological state. In this paper, we present a novel aortic phantom reconstructed from patient-specific data with variable wall compliance that can be tuned without recreating the phantom. The three-dimensional (3D) geometry of an aortic arch was retrieved from a computed tomography angiography scan. A rubber-like silicone phantom was manufactured and connected to a compliance chamber in order to tune its compliance. A lumped resistance was also coupled with the system. The compliance of the aortic arch model was validated using the Young's modulus and characterized further with respect to clinically relevant indicators. The silicone model demonstrates that compliance can be finely tuned with this system under pulsatile flow conditions. The phantom replicated values of compliance in the physiological range. Both, the pressure curves and the asymmetrical behavior of the expansion, are in agreement with the literature. This novel design approach allows obtaining for the first time a phantom with tunable compliance. Vascular phantoms designed and developed with the methodology proposed in this paper have high potential to be used in diverse conditions. Applications include training of physicians, pre-operative trials for complex interventions, testing of medical devices for cardiovascular diseases (CVDs), and comparative Magnetic-resonance-imaging (MRI)-based computational studies.


Author(s):  
Xiaowei Wang ◽  
Zhilei Fu ◽  
Dongbo Guan ◽  
Yanli Dou ◽  
Tongfei Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document