scholarly journals Dinoflagellate biostratigraphy of Eastern Indonesia stratigraphy: key of petroleum exploration success

2021 ◽  
Vol 47 (3) ◽  
pp. 75-76
Author(s):  
Herman Darman

Several major discoveries in the eastern part of Indonesia (e.g. Tangguh and Abadi) have increased more petroleum exploration interest in the area. These sizeable discoveries encountered gas in the Jurassic sandstone, which is a key reservoir target in the Northwest Shelf of Australia. The Mesozoic sandstone provenance is located in the Australian Continental Plate or also known as the Sahul Shelf. Thousands of wells were drilled in the Sahul Shelf and the stratigraphy in this area is well understood. The extension of the Mesozoic sandstone towards Indonesian territory, with much less well information, is one of the keys of success for petroleum exploration. Refinement of the stratigraphy of the eastern part of Indonesia is crucial to understand the extension.To refine the stratigraphy of Eastern Indonesia, especially for the Mesozoic interval, dinoflagellates play a significant role. Several types of this marine biota have been used by Australian stratigraphers as markers. In the case where stratigraphic tie to Northwest Shelf Australia discoveries, key wells or standard chronostratigraphy, dinoflagellate understanding is critical.Dinoflagellate markers are used to mark several subdivisions of Plover Sandstone. Norvick (2001) used W. indotata and D. caddaensis Maximum Flooding Surfaces to subdivide the reservoir target into upper, middle and lower Plover Formation. These surfaces are named after dinoflagellates. More markers were identified to mark the source rock and seal in the petroleum system. To have a detail correlation from Indonesia to the NW Shelf, understanding of dinoflagellates is crucial. 

2020 ◽  
Vol 12 (1) ◽  
pp. 580-597
Author(s):  
Mohamad Hamzeh ◽  
Farid Karimipour

AbstractAn inevitable aspect of modern petroleum exploration is the simultaneous consideration of large, complex, and disparate spatial data sets. In this context, the present article proposes the optimized fuzzy ELECTRE (OFE) approach based on combining the artificial bee colony (ABC) optimization algorithm, fuzzy logic, and an outranking method to assess petroleum potential at the petroleum system level in a spatial framework using experts’ knowledge and the information available in the discovered petroleum accumulations simultaneously. It uses the characteristics of the essential elements of a petroleum system as key criteria. To demonstrate the approach, a case study was conducted on the Red River petroleum system of the Williston Basin. Having completed the assorted preprocessing steps, eight spatial data sets associated with the criteria were integrated using the OFE to produce a map that makes it possible to delineate the areas with the highest petroleum potential and the lowest risk for further exploratory investigations. The success and prediction rate curves were used to measure the performance of the model. Both success and prediction accuracies lie in the range of 80–90%, indicating an excellent model performance. Considering the five-class petroleum potential, the proposed approach outperforms the spatial models used in the previous studies. In addition, comparing the results of the FE and OFE indicated that the optimization of the weights by the ABC algorithm has improved accuracy by approximately 15%, namely, a relatively higher success rate and lower risk in petroleum exploration.


2020 ◽  
Vol 38 (6) ◽  
pp. 2695-2710
Author(s):  
Yao-Ping Wang ◽  
Xin Zhan ◽  
Tao Luo ◽  
Yuan Gao ◽  
Jia Xia ◽  
...  

The oil–oil and oil–source rock correlations, also termed as geochemical correlations, play an essential role in the construction of petroleum systems, guidance of petroleum exploration, and definition of reservoir compartments. In this study, the problems arising from oil–oil and oil–source rock correlations were investigated using chemometric methods on oil and source rock samples from the WZ12 oil field in the Weixinan sag in the Beibuwan Basin. Crude oil from the WZ12 oil field can be classified into two genetic families: group A and B, using multidimensional scaling and principal component analysis. Similarly, source rocks of the Liushagang Formation, including its first, second, and third members, can be classified into group I and II, corresponding to group B and A crude oils, respectively. The principle geochemical parameters in the geochemical correlation for the characterisation and classification of crude oils and source rocks were 4MSI, C27Dia/C27S, and C24 Tet/C26 TT. This study provides insights into the selection of appropriate geochemical parameters for oil–oil and oil–source rock correlations, which can also be applied to other sedimentary basins.


Sign in / Sign up

Export Citation Format

Share Document