scholarly journals Horizontal Grid Spacing Comparison Among Random Forest Algorithms to Nowcast Cloud-to-Ground Lightning Occurrence

Author(s):  
ALICE LA FATA ◽  
Federico Amato ◽  
Marina Bernardi ◽  
Mirko D'Andrea ◽  
Renato Procopio ◽  
...  

Abstract This paper discusses the use of Random Forest (RF), a popular Machine Learning (ML) algorithm, to perform spatially explicit nowcasting of cloud-to-ground lightning occurrence. An application to the Italian territory and the surrounding seas is presented. Specifically, 1-hour ahead lightning occurrences over the months of August, September and October from 2017 to 2019 have been modelled using a dataset including geo-environmental features. Results obtained with three different spatial resolutions have been compared, for nowcasting both positive and negative strokes. The features’ importance resulting from the best RF models showed how datadriven models are able to identify the relationships between meteorological variables, in agreement with previous physically based knowledge of the phenomenon. The encouraging results obtained in terms of forecasting accuracy support the idea to use ML-based algorithms in early warning procedures for disaster risk management.

2016 ◽  
Vol 73 (11) ◽  
pp. 4289-4309 ◽  
Author(s):  
Tomoki Ohno ◽  
Masaki Satoh ◽  
Yohei Yamada

Abstract Based on the data of a 1-yr simulation by a global nonhydrostatic model with 7-km horizontal grid spacing, the relationships among warm-core structures, eyewall slopes, and the intensities of tropical cyclones (TCs) were investigated. The results showed that stronger TCs generally have warm-core maxima at higher levels as their intensities increase. It was also found that the height of a warm-core maximum ascends (descends) as the TC intensifies (decays). To clarify how the height and amplitude of warm-core maxima are related to TC intensity, the vortex structures of TCs were investigated. By gradually introducing simplifications of the thermal wind balance, it was established that warm-core structures can be reconstructed using only the tangential wind field within the inner-core region and the ambient temperature profile. A relationship between TC intensity and eyewall slope was investigated by introducing a parameter that characterizes the shape of eyewalls and can be evaluated from satellite measurements. The authors found that the eyewall slope becomes steeper (shallower) as the TC intensity increases (decreases). Based on a balanced model, the authors proposed a relationship between TC intensity and eyewall slope. The result of the proposed model is consistent with that of the analysis using the simulation data. Furthermore, for sufficiently strong TCs, the authors found that the height of the warm-core maximum increases as the slope becomes steeper, which is consistent with previous observational studies. These results suggest that eyewall slopes can be used to diagnose the intensities and structures of TCs.


2009 ◽  
Vol 137 (2) ◽  
pp. 745-765 ◽  
Author(s):  
Kevin A. Hill ◽  
Gary M. Lackmann

Abstract The Weather Research and Forecasting Advanced Research Model (WRF-ARW) was used to perform idealized tropical cyclone (TC) simulations, with domains of 36-, 12-, and 4-km horizontal grid spacing. Tests were conducted to determine the sensitivity of TC intensity to the available surface layer (SL) and planetary boundary layer (PBL) parameterizations, including the Yonsei University (YSU) and Mellor–Yamada–Janjic (MYJ) schemes, and to horizontal grid spacing. Simulations were run until a quasi-steady TC intensity was attained. Differences in minimum central pressure (Pmin) of up to 35 hPa and maximum 10-m wind (V10max) differences of up to 30 m s−1 were present between a convection-resolving nested domain with 4-km grid spacing and a parent domain with cumulus parameterization and 36-km grid spacing. Simulations using 4-km grid spacing are the most intense, with the maximum intensity falling close to empirical estimates of maximum TC intensity. Sensitivity to SL and PBL parameterization also exists, most notably in simulations with 4-km grid spacing, where the maximum intensity varied by up to ∼10 m s−1 (V10max) or ∼13 hPa (Pmin). Values of surface latent heat flux (LHFLX) are larger in MYJ than in YSU at the same wind speeds, and the differences increase with wind speed, approaching 1000 W m−2 at wind speeds in excess of 55 m s−1. This difference was traced to a larger exchange coefficient for moisture, CQ, in the MYJ scheme. The exchange coefficients for sensible heat (Cθ) and momentum (CD) varied by <7% between the SL schemes at the same wind speeds. The ratio Cθ/CD varied by <5% between the schemes, whereas CQ/CD was up to 100% larger in MYJ, and the latter is theorized to contribute to the differences in simulated maximum intensity. Differences in PBL scheme mixing also likely played a role in the model sensitivity. Observations of the exchange coefficients, published elsewhere and limited to wind speeds <30 m s−1, suggest that CQ is too large in the MYJ SL scheme, whereas YSU incorporates values more consistent with observations. The exchange coefficient for momentum increases linearly with wind speed in both schemes, whereas observations suggest that the value of CD becomes quasi-steady beyond some critical wind speed (∼30 m s−1).


2019 ◽  
Vol 34 (5) ◽  
pp. 1395-1416 ◽  
Author(s):  
Corey K. Potvin ◽  
Jacob R. Carley ◽  
Adam J. Clark ◽  
Louis J. Wicker ◽  
Patrick S. Skinner ◽  
...  

Abstract The 2016–18 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiments (SFE) featured the Community Leveraged Unified Ensemble (CLUE), a coordinated convection-allowing model (CAM) ensemble framework designed to provide empirical guidance for development of operational CAM systems. The 2017 CLUE included 81 members that all used 3-km horizontal grid spacing over the CONUS, enabling direct comparison of forecasts generated using different dynamical cores, physics schemes, and initialization procedures. This study uses forecasts from several of the 2017 CLUE members and one operational model to evaluate and compare CAM representation and next-day prediction of thunderstorms. The analysis utilizes existing techniques and novel, object-based techniques that distill important information about modeled and observed storms from many cases. The National Severe Storms Laboratory Multi-Radar Multi-Sensor product suite is used to verify model forecasts and climatologies of observed variables. Unobserved model fields are also examined to further illuminate important intermodel differences in storms and near-storm environments. No single model performed better than the others in all respects. However, there were many systematic intermodel and intercore differences in specific forecast metrics and model fields. Some of these differences can be confidently attributed to particular differences in model design. Model intercomparison studies similar to the one presented here are important to better understand the impacts of model and ensemble configurations on storm forecasts and to help optimize future operational CAM systems.


2020 ◽  
Vol 148 (7) ◽  
pp. 2645-2669
Author(s):  
Craig S. Schwartz ◽  
May Wong ◽  
Glen S. Romine ◽  
Ryan A. Sobash ◽  
Kathryn R. Fossell

Abstract Five sets of 48-h, 10-member, convection-allowing ensemble (CAE) forecasts with 3-km horizontal grid spacing were systematically evaluated over the conterminous United States with a focus on precipitation across 31 cases. The various CAEs solely differed by their initial condition perturbations (ICPs) and central initial states. CAEs initially centered about deterministic Global Forecast System (GFS) analyses were unequivocally better than those initially centered about ensemble mean analyses produced by a limited-area single-physics, single-dynamics 15-km continuously cycling ensemble Kalman filter (EnKF), strongly suggesting relative superiority of the GFS analyses. Additionally, CAEs with flow-dependent ICPs derived from either the EnKF or multimodel 3-h forecasts from the Short-Range Ensemble Forecast (SREF) system had higher fractions skill scores than CAEs with randomly generated mesoscale ICPs. Conversely, due to insufficient spread, CAEs with EnKF ICPs had worse reliability, discrimination, and dispersion than those with random and SREF ICPs. However, members in the CAE with SREF ICPs undesirably clustered by dynamic core represented in the ICPs, and CAEs with random ICPs had poor spinup characteristics. Collectively, these results indicate that continuously cycled EnKF mean analyses were suboptimal for CAE initialization purposes and suggest that further work to improve limited-area continuously cycling EnKFs over large regional domains is warranted. Additionally, the deleterious aspects of using both multimodel and random ICPs suggest efforts toward improving spread in CAEs with single-physics, single-dynamics, flow-dependent ICPs should continue.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 384
Author(s):  
John R. Lawson ◽  
William A. Gallus ◽  
Corey K. Potvin

The bow echo, a mesoscale convective system (MCS) responsible for much hail and wind damage across the United States, is associated with poor skill in convection-allowing numerical model forecasts. Given the decrease in convection-allowing grid spacings within many operational forecasting systems, we investigate the effect of finer resolution on the character of bowing-MCS development in a real-data numerical simulation. Two ensembles were generated: one with a single domain of 3-km horizontal grid spacing, and another nesting a 1-km domain with two-way feedback. Ensemble members were generated from their control member with a stochastic kinetic-energy backscatter scheme, with identical initial and lateral-boundary conditions. Results suggest that resolution reduces hindcast skill of this MCS, as measured with an adaptation of the object-based Structure–Amplitude–Location method. The nested 1-km ensemble produces a faster system than in both the 3-km ensemble and observations. The nested 1-km simulation also produced stronger cold pools, which could be enhanced by the increased (fractal) cloud surface area with higher resolution, allowing more entrainment of dry air and hence increased evaporative cooling.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 572 ◽  
Author(s):  
Pilar Barría ◽  
María Luisa Cruzat ◽  
Rodrigo Cienfuegos ◽  
Jorge Gironás ◽  
Cristián Escauriaza ◽  
...  

Multi-hazard evaluations are fundamental inputs for disaster risk management plans and the implementation of resilient urban environments, adapted to extreme natural events. Risk assessments from natural hazards have been typically restricted to the analysis of single hazards or focused on the vulnerability of specific targets, which might result in an underestimation of the risk level. This study presents a practical and effective methodology applied to two Chilean coastal cities to characterize risk in data-poor regions, which integrates multi-hazard and multi-vulnerability analyses through physically-based models and easily accessible data. A matrix approach was used to cross the degree of exposure to floods, landslides, tsunamis, and earthquakes hazards, and two dimensions of vulnerability (physical, socio-economical). This information is used to provide the guidelines to lead the development of resilience thinking and disaster risk management in Chile years after the major and destructive 2010 Mw8.8 earthquake.


2012 ◽  
Vol 50 ◽  
pp. 377-380 ◽  
Author(s):  
Christel Bouet ◽  
Guy Cautenet ◽  
Gilles Bergametti ◽  
Béatrice Marticorena ◽  
Martin C. Todd ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5488
Author(s):  
Daniel Vassallo ◽  
Raghavendra Krishnamurthy ◽  
Thomas Sherman ◽  
Harindra J. S. Fernando

Although the random forest (RF) model is a powerful machine learning tool that has been utilized in many wind speed/power forecasting studies, there has been no consensus on optimal RF modeling strategies. This study investigates three basic questions which aim to assist in the discernment and quantification of the effects of individual model properties, namely: (1) using a standalone RF model versus using RF as a correction mechanism for the persistence approach, (2) utilizing a recursive versus direct multi-step forecasting strategy, and (3) training data availability on model forecasting accuracy from one to six hours ahead. These questions are investigated utilizing data from the FINO1 offshore platform and Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) C1 site, and testing results are compared to the persistence method. At FINO1, due to the presence of multiple wind farms and high inter-annual variability, RF is more effective as an error-correction mechanism for the persistence approach. The direct forecasting strategy is seen to slightly outperform the recursive strategy, specifically for forecasts three or more steps ahead. Finally, increased data availability (up to ∼8 equivalent years of hourly training data) appears to continually improve forecasting accuracy, although changing environmental flow patterns have the potential to negate such improvement. We hope that the findings of this study will assist future researchers and industry professionals to construct accurate, reliable RF models for wind speed forecasting.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 462 ◽  
Author(s):  
Janice Coen ◽  
Wilfrid Schroeder ◽  
Brad Quayle

On 8–9 October 2017, fourteen wildfires developed rapidly during a strong Diablo wind event in northern California including the Tubbs Fire, which travelled over 19 km in 3.25 h. Here, we applied the CAWFE® coupled numerical weather prediction-fire modeling system to investigate the airflow regime and extreme wind peaks underlying the extreme fire behavior using simulations that refine from a 10 km to a 185 m horizontal grid spacing. We found that as Diablo winds travelled south down the Sacramento Valley and fanned out southwestward over the Wine Country, their strength waxed and waned and their direction wavered, creating varying locations near fire origins where wind overrunning topography reached 30–40 m/s, along with streaks and bursts of strong winds in the lee of some topographic features and stagnation downstream of others. Despite a statically stable layer in the lowest 1.5 km, the high Froude number flow sometimes resembled a hydraulic jump. Elsewhere, the flow behaved similarly to neutrally-stratified flow over small hills, creating wind extrema that exceeded 40 m/s at the crest of some lesser hills including near the Tubbs fire ignition, but which shed bursts of high speed winds that travel downstream at approximately 5–7-min intervals. Nonetheless, simulated fire growth lagged satellite detection of fire arrival in Santa Rosa by up to 1 h, although whether the data detect fire line or spotting is ambiguous. A forecast simulation with a 370 m horizontal grid spacing produced an on-time fire line arrival in Santa Rosa, with calculations executed 4 times faster than real time on a single computer processor.


Sign in / Sign up

Export Citation Format

Share Document