scholarly journals Outer actions of a discrete amenable group on approximately finite dimensional factors II, the III$_{\lambda}$-case, $\lambda\neq 0$

2007 ◽  
Vol 100 (1) ◽  
pp. 75 ◽  
Author(s):  
Yoshikazu Katayama ◽  
Masamichi Takesaki

To study outer actions $\alpha$ of a group $G$ on a factor $\mathcal M$ of type $\mathrm{III}_\lambda$, $0<\lambda<1$, we study first the cohomology group of a group with the unitary group of an abelian von Neumann algebra as a coefficient group and establish a technique to reduce the coefficient group to the torus $\mathsf T$ by the Shapiro mechanism based on the groupoid approach. We then show a functorial construction of outer actions of a countable discrete amenable group on an AFD factor of type $\mathrm{III}_\lambda$, sharpening the result in [17, §4]. The periodicity of the flow of weights on a factor $\mathcal M$ of type $\mathrm{III}_\lambda$ allows us to introduce an equivariant commutative square directly related to the discrete core. But this makes it necessary to introduce an enlarged group $\mathrm{Aut}(\mathcal M)_{m}$ relative to the modulus homomorphism $m=\mod\colon \mathrm{Aut}(\mathcal M)\to \mathsf R/T'\mathsf Z$. We then discuss the reduced modified HJR-exact sequence, which allows us to describe the invariant of outer action $\alpha$ in a simpler form than the one for a general AFD factor: for example, the cohomology group $H_{m,s}^{out}(G,N,\mathsf T)$ of modular obstructions is a compact abelian group. Making use of these reductions, we prove the classification result of outer actions of $G$ on an AFD factor $\mathcal M$ of type $\mathrm{III}_{\lambda}$.

1977 ◽  
Vol 81 (2) ◽  
pp. 233-236 ◽  
Author(s):  
A. Guyan Robertson

We investigate here the question of uniqueness of best approximation to operators in von Neumann algebras by elements of certain linear subspaces. Recall that a linear subspace V of a Banach space X is called a Chebyshev subspace if each vector in X has a unique best approximation by vectors in V. Our first main result characterizes the one-dimensional Chebyshev subspaces of a von Neumann algebra. This may be regarded as a generalization of a result of Stampfli [(4), theorem 2, corollary] which states that the scalar multiples of the identity operator form a Chebyshev subspace. Alternatively it may be regarded as a generalization of the commutative situation in which a continuous complex-valued function f on a compact Hausdorff space X spans a Chebyshev subspace of C(X) if and only if f does not vanish on X [(3), p. 215]. Our second main result is that a finite dimensional * subalgebra, of dimension > 1, of an infinite dimensional von Neumann algebra cannot be a Chebyshev subspace. This imposes limits to further generalization of Stampfli's result.


1989 ◽  
Vol 31 (1) ◽  
pp. 31-47
Author(s):  
Baruch Solel

Let M be a σ-finite von Neumann algebra and α = {αt}t∈A be a representation of a compact abelian group A as *-automorphisms of M. Let Γ be the dual group of A and suppose that Γ is totally ordered with a positive semigroup Σ⊆Γ. The analytic algebra associated with α and Σ iswhere spα(a) is Arveson's spectrum. These algebras were studied (also for A not necessarily compact) by several authors starting with Loebl and Muhly [10].


1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


1985 ◽  
Vol 37 (4) ◽  
pp. 635-643 ◽  
Author(s):  
A. K. Holzherr

Let G be a locally compact group and ω a normalized multiplier on G. Denote by V(G) (respectively by V(G, ω)) the von Neumann algebra generated by the regular representation (respectively co-regular representation) of G. Kaniuth [6] and Taylor [14] have characterized those G for which the maximal type I finite central projection in V(G) is non-zero (respectively the identity operator in V(G)).In this paper we determine necessary and sufficient conditions on G and ω such that the maximal type / finite central projection in V(G, ω) is non-zero (respectively the identity operator in V(G, ω)) and construct this projection explicitly as a convolution operator on L2(G). As a consequence we prove the following statements are equivalent,(i) V(G, ω) is type I finite,(ii) all irreducible multiplier representations of G are finite dimensional,(iii) Gω (the central extension of G) is a Moore group, that is all its irreducible (ordinary) representations are finite dimensional.


1977 ◽  
Vol 81 (2) ◽  
pp. 237-243 ◽  
Author(s):  
J. Moffat

In section 3 we shall prove the following results: Let G be a separable locally compact abelian group, R a von Neumann algebra acting on a separable Hilbert space, and α a weakly continuous representation of G by inner *-automorphisms of R, say α(g) = ad Wg with Wg ∈ U(R). Then there is a weakly continuous unitary representation of G, by unitaries in R, implementing α if and only if the Wg's commute with each other. The result was motivated by the proof of (7), theorem 1. Suppose now Gis a discrete amenable group of *-automorphisms of a countably decomposable von Neumann algebra R. In section 3 we give a necessary and sufficient condition for the existence of a faithful normal G-invariant state on R. This generalizes a result of Hajian and Kakutani on invariant measures (2).


2001 ◽  
Vol 03 (01) ◽  
pp. 15-85 ◽  
Author(s):  
DAN BURGHELEA ◽  
LEONID FRIEDLANDER ◽  
THOMAS KAPPELER

This paper achieves, among other things, the following: • It frees the main result of [9] from the hypothesis of determinant class and extends this result from unitary to arbitrary representations. • It extends (and at the same times provides a new proof of) the main result of Bismut and Zhang [3] from finite dimensional representations of Γ to representations on an [Formula: see text]-Hilbert module of finite type ([Formula: see text] a finite von Neumann algebra). The result of [3] corresponds to [Formula: see text]. • It provides interesting real valued functions on the space of representations of the fundamental group Γ of a closed manifold M. These functions might be a useful source of topological and geometric invariants of M. These objectives are achieved with the help of the relative torsion ℛ, first introduced by Carey, Mathai and Mishchenko [12] in special cases. The main result of this paper calculates explicitly this relative torsion (cf. Theorem 1.1).


2011 ◽  
Vol 22 (07) ◽  
pp. 991-1011 ◽  
Author(s):  
JUNSHENG FANG ◽  
MINGCHU GAO ◽  
ROGER R. SMITH

A triple of finite von Neumann algebras B ⊆ N ⊆ M is said to have the relative weak asymptotic homomorphism property if there exists a net of unitary operators {uλ}λ∈Λ in B such that [Formula: see text] for all x,y ∈ M. We prove that a triple of finite von Neumann algebras B ⊆ N ⊆ M has the relative weak asymptotic homomorphism property if and only if N contains the set of all x ∈ M such that [Formula: see text] for a finite number of elements x1, …, xn in M. Such an x is called a one-sided quasi-normalizer of B, and the von Neumann algebra generated by all one-sided quasi-normalizers of B is called the one-sided quasi-normalizer algebra of B. We characterize one-sided quasi-normalizer algebras for inclusions of group von Neumann algebras and use this to show that one-sided quasi-normalizer algebras and quasi-normalizer algebras are not equal in general. We also give some applications to inclusions L(H) ⊆ L(G) arising from containments of groups. For example, when L(H) is a masa we determine the unitary normalizer algebra as the von Neumann algebra generated by the normalizers of H in G.


2017 ◽  
Vol 38 (7) ◽  
pp. 2618-2624 ◽  
Author(s):  
TOBE DEPREZ ◽  
STEFAAN VAES

We say that a countable group $G$ is McDuff if it admits a free ergodic probability measure preserving action such that the crossed product is a McDuff $\text{II}_{1}$ factor. Similarly, $G$ is said to be stable if it admits such an action with the orbit equivalence relation being stable. The McDuff property, stability, inner amenability and property Gamma are subtly related and several implications and non-implications were obtained in Effros [Property $\unicode[STIX]{x1D6E4}$ and inner amenability. Proc. Amer. Math. Soc.47 (1975), 483–486], Jones and Schmidt [Asymptotically invariant sequences and approximate finiteness. Amer. J. Math.109 (1987), 91–114], Vaes [An inner amenable group whose von Neumann algebra does not have property Gamma. Acta Math.208 (2012), 389–394], Kida [Inner amenable groups having no stable action. Geom. Dedicata173 (2014), 185–192] and Kida [Stability in orbit equivalence for Baumslag–Solitar groups and Vaes groups. Groups Geom. Dyn.9 (2015), 203–235]. We complete the picture with the remaining implications and counterexamples.


2005 ◽  
Vol 79 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Paul Jolissaint

AbstractLet F′ be the commutator subgroup of F and let Γ0 be the cyclic group generated by the first generator of F. We continue the study of the central sequences of the factor L(F′), and we prove that the abelian von Neumann algebra L(Γ0) is a strongly singular MASA in L(F). We also prove that the natural action of F on [0, 1] is ergodic and that its ratio set is {0} ∪ {2k; k ∞ Z}.


Sign in / Sign up

Export Citation Format

Share Document