foraging niche
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 21)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Andrea Bamberg Migliano ◽  
Lucio Vinicius

Various studies have investigated cognitive mechanisms underlying culture in humans and other great apes. However, the adaptive reasons for the evolution of uniquely sophisticated cumulative culture in our species remain unclear. We propose that the cultural capabilities of humans are the evolutionary result of a stepwise transition from the ape-like lifestyle of earlier hominins to the foraging niche still observed in extant hunter–gatherers. Recent ethnographic, archaeological and genetic studies have provided compelling evidence that the components of the foraging niche (social egalitarianism, sexual and social division of labour, extensive co-residence and cooperation with unrelated individuals, multilocality, fluid sociality and high between-camp mobility) engendered a unique multilevel social structure where the cognitive mechanisms underlying cultural evolution (high-fidelity transmission, innovation, teaching, recombination, ratcheting) evolved as adaptations. Therefore, multilevel sociality underlies a ‘social ratchet’ or irreversible task specialization splitting the burden of cultural knowledge across individuals, which may explain why human collective intelligence is uniquely able to produce sophisticated cumulative culture. The foraging niche perspective may explain why a complex gene-culture dual inheritance system evolved uniquely in humans and interprets the cultural, morphological and genetic origins of Homo sapiens as a process of recombination of innovations appearing in differentiated but interconnected populations. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


Author(s):  
Dominique G. Maucieri ◽  
Austin James Ashbaugh ◽  
Jessica M. Theodor

Sexual dimorphism can lead to differences in foraging style among conspecifics due to morphological differences. Within bats, maneuverability and speed of flight are influenced by wing shape and size, which may differ between sexes. Female bats gain about 30% of their body mass during pregnancy, affecting their agility and flight efficiency. To fill the same foraging niche as males, pregnant female bats would require wing size and/or shape modifications to maintain maneuverability. We investigated sexual dimorphism in bat wing morphology and how it varies among foraging guilds. Wing photos of male and female adult bats (19 species) in Canada, Belize, and Dominica were analyzed using 2D geometric morphometrics, wing loading, and aspect ratios. Nonpregnant female bats had higher wing loading than males, suggesting they are less maneuverable than males. Additionally, mass increases during pregnancy may not permit female bats to forage as male conspecifics do. Wing shape differed minimally among foraging guilds with only frugivores differing significantly, from all other guilds. Further studies should investigate how female bats forage during their reproductive cycle and determine how frugivore wings differ and whether there are individual differences in wing shape that are not consistent among bat species.


2021 ◽  
Vol 7 (20) ◽  
pp. eabg3628
Author(s):  
Taiki Adachi ◽  
Akinori Takahashi ◽  
Daniel P. Costa ◽  
Patrick W. Robinson ◽  
Luis A. Hückstädt ◽  
...  

Small mesopelagic fishes dominate the world’s total fish biomass, yet their ecological importance as prey for large marine animals is poorly understood. To reveal the little-known ecosystem dynamics, we identified prey, measured feeding events, and quantified the daily energy balance of 48 deep-diving elephant seals throughout their oceanic migrations by leveraging innovative technologies: animal-borne smart accelerometers and video cameras. Seals only attained positive energy balance after feeding 1000 to 2000 times per day on small fishes, which required continuous deep diving (80 to 100% of each day). Interspecies allometry suggests that female elephant seals have exceptional diving abilities relative to their body size, enabling them to exploit a unique foraging niche on small but abundant mesopelagic fish. This unique foraging niche requires extreme round-the-clock deep diving, limiting the behavioral plasticity of elephant seals to a changing mesopelagic ecosystem.


2021 ◽  
Author(s):  
Christina N. Service ◽  
Travis Ingram ◽  
Thomas E. Reimchen ◽  
Chris T. Darimont

2021 ◽  
Author(s):  
Antonin J.J. Crumière ◽  
Aidan James ◽  
Pol Lannes ◽  
Sophie Mallett ◽  
Anders Michelsen ◽  
...  

AbstractThe foraging trails of Atta leafcutter colonies are among the most iconic scenes in Neotropical ecosystems, with thousands of ants carrying freshly cut plant fragments back to their nests where they are used to provision a fungal food crop. We tested a hypothesis that the fungal cultivar’s multidimensional requirements for macronutrients (protein and carbohydrates) and minerals (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P and Zn) govern the foraging breadth of Atta colombica leafcutter ants in a Panamanian rainforest. Analyses of freshly cut plant fragments carried by leafcutter foragers showed that the combination of fruits, flowers, and leaves provide for a broad realized nutritional niche that can maximize cultivar’s performance. And, while the leaves that comprised the most harvested resource also delivered an intake target containing protein in excess of the amounts that can maximize cultivar growth, in vitro experiments showed that the minerals P, Al, and Fe can enhance the cultivar’s tolerance to protein-biased substrates, and potentially expand the ants’ foraging niche. Yet, the cultivar also exhibits narrow margins between mineral limitation and toxicity that may render plant fragments with seemingly optimal blends of macronutrients unsuitable for provisioning. Our approach highlights that optimal foraging is inherently multidimensional and links the foraging behavior of a generalist insect herbivore to the fundamental nutritional niche of its microbial symbiont.Significance StatementColonies of Atta colombica leafcutter ants can contain millions of specialized workers exhibiting large-scale generalist herbivory. Yet, this generalist foraging niche also depends on the poorly understood physiological needs of the ants’ domesticated fungal cultivar. We show the cultivar’s fundamental nutritional niche is broad for carbohydrates but narrower for protein and a suite of minerals, but that the cultivar’s sensitivity to excess protein is also mediated by Al, Fe, and P. More generally, this study decouples the multidimensional foraging strategies that enable a generalist herbivore to navigate a complex nutritional landscape and mix many imbalanced foods to achieve balanced cultivar provisioning.


2021 ◽  
Author(s):  
Andrea Migliano ◽  
Lucio Vinicius

Various studies have investigated cognitive mechanisms underlying culture in humans and other great apes. However, the adaptive reasons for the evolution of uniquely sophisticated cumulative culture in our species remain unclear. We propose that the cultural capabilities of humans are the evolutionary result of a stepwise transition from the ape-like lifestyle of earlier hominins to the foraging niche still observed in extant hunter-gatherers. Recent ethnographic, archaeological and genetic studies have provided compelling evidence that the components of the foraging niche (social egalitarianism, sexual and social division of labour, extensive co-residence and cooperation with unrelated individuals, bilocality, fluid sociality and high between-camp mobility) engendered a unique multilevel social structure where the cognitive mechanisms underlying cultural evolution (high-fidelity transmission, innovation, teaching, recombination and ratcheting) evolved as adaptations. As a result, multilevel sociality is behind a ‘social ratchet’ or irreversible task specialisation that splits the burden of cultural knowledge across individuals, which may explain why human collective intelligence is uniquely able to produce cumulative culture. The foraging niche perspective accounts for why a complex gene-culture dual inheritance system evolved uniquely in humans, and interprets the cultural, morphological and genetic origins of Homo sapiens as a process of recombination of innovations appearing in differentiated but interconnected populations.


Author(s):  
Zbigniew M. Bochenski ◽  
Teresa Tomek ◽  
Małgorzata Bujoczek ◽  
Grzegorz Salwa

AbstractThe paper describes a complete specimen of a passerine bird from the early Oligocene of Poland, preserved as imprints of bones and feathers on two slabs. Crosnoornis nargizia gen. et sp. nov. is just the fifth passerine species described from the Paleogene worldwide and the fourth complete. The features preserved in the distal elements of the wing exclude Acanthisittidae and Oscines and indicate that this bird can be included in Suboscines, making it the second complete representative of this group in the Paleogene. A strong, straight beak indicates that this bird could feed on a variety of foods, including hard seeds, fruit and invertebrates, and, therefore, occupied a different foraging niche than the Oligocene passerines described so far. The wing proportions, a very short tail and relatively long legs indicate that this bird spent most of its time in the forest, close to the ground in dense shrubs or dense tree crowns.


2020 ◽  
Vol 7 (11) ◽  
pp. 191511
Author(s):  
Timothée A. Poupart ◽  
Susan M. Waugh ◽  
Akiko Kato ◽  
John P. Y. Arnould

Most Procellariform seabirds are pelagic, breed in summer when prey availability peaks, and migrate for winter. They also display a dual foraging strategy (short and long trips) and sex-specific foraging. The Westland petrel Procellaria westlandica , a New Zealand endemic, is one of the rare seabirds breeding in winter. Preliminary findings on this large and sexually dimorphic petrel suggest a foraging behaviour with no evidence of a dual strategy, within a narrow range and with shared areas between sexes. To investigate further this unusual strategy, the present study determined the fine-scale at-sea behaviours (global positioning system and accelerometer data loggers) and trophic niches (stable isotopes in whole blood) of chick-rearing individuals (16 males and 13 females). All individuals foraged on the shelf-slope of the west coast of New Zealand's South Island with short, unimodal trips. Both sexes foraged at similar intensity without temporal, spatial or isotopic niche segregation. These findings suggest the presence of a winter prey resource close to the colony, sufficient to satisfy the nutritional needs of breeding without increasing the foraging effort or intra-specific competition avoidance during winter. Additional data are needed to assess the consistency of foraging niche between the sexes and its reproductive outcomes in view of anticipated environmental changes.


Sign in / Sign up

Export Citation Format

Share Document