passerine species
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 39)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Anastasia Slobodchikova ◽  
Lyubov Malinovskaya ◽  
Ekaterina Grishko ◽  
Inna Pristyazhnyuk ◽  
Anna Torgasheva ◽  
...  

Background: To date less than 10% of bird species have been karyotyped. They are rather conservative with diploid chromosome numbers about 78-80 in most species examined. Immunostaining of meiotic chromosomes at pachytene stage enables more precise estimates of the number, morphology and variability of macro- and microchromosomes than conventional analysis of mitotic metaphase chromosomes does. Analysis of pachytene chromosomes led to discovery of germline-restricted chromosome (GRC) that was present in germline cells and absent in somatic cells in all 16 species of passerine birds examined. GRC has not been found in any non-passerine bird. Results: In this study, using immunolocalization of SYCP3, the main protein of the lateral elements of the synaptonemal complex (SC) and centromere proteins we examined male pachytene karyotypes of sixteen passerine species and one outgroup species the Common cuckoo Cuculus canorus and provided their idiograms and precise estimates of their diploid chromosome numbers and the numbers of chromosome arms. We provided the first description of the karyotypes of three species, corrected the published data on the karyotypes of ten species and confirmed them for four species. The pachytene cells of the Gouldian finch, Brambling and Common linnet contained heteromorphic bivalents indicating heterozygosity for inversions or centromere shifts. The European pied flycatcher, Gouldian finch and Domestic canary have extended centromeres in several macro- and microchromosomes. GRCs of various sizes and shapes were detected in all passerine species examined. Their chromatin was heavily labeled by anticentromere antibodies. The lateral elements of the GRC SC varied in their size from the largest to the smallest element of the pachytene karyotype. They also varied in shape from continuous to fragmented. Conclusions: All songbirds examined, except the Eurasian skylark, have highly conservative karyotypes, 2n=80-82+GRC with seven pairs of macrochromosomes and 33-34 pairs of microchromosomes. The interspecies differences concern the sizes of the macrochromosomes, morphology of the microchromosomes and sizes of the centromeres. GRC is present in all songbird species examined, varying in size, morphology and SC structure even between closely related species. This indicates its fast evolution.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manon Poignet ◽  
Martina Johnson Pokorná ◽  
Marie Altmanová ◽  
Zuzana Majtánová ◽  
Dmitry Dedukh ◽  
...  

Changes in chromosomal structure involving chromosomal rearrangements or copy number variation of specific sequences can play an important role in speciation. Here, we explored the chromosomal structure of two hybridizing passerine species; the common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia luscinia), using conventional cytogenetic approaches, immunostaining of meiotic chromosomes, fluorescence in situ hybridization as well as comparative genomic hybridization (CGH). We found that the two nightingale species show conserved karyotypes with the same diploid chromosome number of 2n = 84. In addition to standard chromosomes, both species possessed a small germline restricted chromosome of similar size as a microchromosome. Just a few subtle changes in chromosome morphology were observed between the species, suggesting that only a limited number of chromosomal rearrangements occurred after the species divergence. The interspecific CGH experiment suggested that the two nightingale species might have diverged in centromeric repetitive sequences in most macro- and microchromosomes. In addition, some chromosomes showed changes in copy number of centromeric repeats between the species. The observation of very similar karyotypes in the two nightingale species is consistent with a generally slow rate of karyotype evolution in birds. The divergence of centromeric sequences between the two species could theoretically cause meiotic drive or reduced fertility in interspecific hybrids. Nevertheless, further studies are needed to evaluate the potential role of chromosomal structural variations in nightingale speciation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pablo Sabat ◽  
Seth D. Newsome ◽  
Stephanie Pinochet ◽  
Roberto Nespolo ◽  
Juan Carlos Sanchez-Hernandez ◽  
...  

Understanding physiological traits and ecological conditions that influence a species reliance on metabolic water is critical to creating accurate physiological models that can assess their ability to adapt to environmental perturbations (e.g., drought) that impact water availability. However, relatively few studies have examined variation in the sources of water animals use to maintain water balance, and even fewer have focused on the role of metabolic water. A key reason is methodological limitations. Here, we applied a new method that measures the triple oxygen isotopic composition of a single blood sample to estimate the contribution of metabolic water to the body water pool of three passerine species. This approach relies on Δ'17O, defined as the residual from the tight linear correlation that naturally exists between δ17O and δ18O values. Importantly, Δ'17O is relatively insensitive to key fractionation processes, such as Rayleigh distillation in the water cycle that have hindered previous isotope-based assessments of animal water balance. We evaluated the effects of changes in metabolic rate and water intake on Δ'17O values of captive rufous-collared sparrows (Zonotrichia capensis) and two invertivorous passerine species in the genus Cinclodes from the field. As predicted, colder acclimation temperatures induced increases in metabolic rate, decreases in water intake, and increases in the contribution of metabolic water to the body water pool of Z. capensis, causing a consistent change in Δ'17O. Measurement of Δ'17O also provides an estimate of the δ18O composition of ingested pre-formed (drinking/food) water. Estimated δ18O values of drinking/food water for captive Z. capensis were ~ −11‰, which is consistent with that of tap water in Santiago, Chile. In contrast, δ18O values of drinking/food water ingested by wild-caught Cinclodes were similar to that of seawater, which is consistent with their reliance on marine resources. Our results confirm the utility of this method for quantifying the relative contribution of metabolic versus pre-formed drinking/food water to the body water pool in birds.


Author(s):  
Ivana Czocherová ◽  
Lucia Rubáčová ◽  
Adam Petrusek ◽  
Tereza Petrusková

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Donghui Ma ◽  
Mengjie Lu ◽  
Zhichang Cheng ◽  
Xingnan Du ◽  
Xiaoyu Zou ◽  
...  

Abstract Background Parental investment by birds is limited by the habitat environment, and a male parent increases its effort to reproduce in birds that live in high-altitude areas. Methods A study of the reproductive behaviour of the Saxaul Sparrow (Passer ammodendri) and the Isabelline Shrike (Lanius isabellinus) was carried out at the Gansu An’xi Extremely Arid Desert National Nature Reserve in northwest China to determine the reproductive input of passerine species in desert habitats. Results In Saxaul Sparrows, compared to the female parent, the male parent exhibited a significantly higher frequency of nest-defense behaviour (chirping and warning) during nesting, hatching and feeding periods. In addition, in comparison to the female parent, the male parent exhibited almost equal frequencies of nesting and incubation but fed nestlings significantly more times. Similar to the male sparrows, the feeding rates of the male Isabelline Shrikes were significantly higher than those of the females. The hatching rate and fledging rate of the Saxaul Sparrow on average in this study were 81.99 and 91.92%, respectively, while those of the shrike were 69.00 and 96.53%, respectively. Conclusions These two different passerine species living in the same desert environment exhibited the same trend in their reproductive investments. Adapting to desert environments is a strategy that may have evolved in passerines where male parent birds put more effort than females into reproduction to ensure high reproductive output.


Author(s):  
HARUKA MIZUMURA ◽  
KOHEI KUBOTA ◽  
HIROYOSHI HIGUCHI

Summary Along with many long-distance migrant passerine species in the East Asian-Australasian Flyway, the migratory Brown Shrike Lanius cristatus superciliosus has been sharply declining throughout its breeding range. Its breeding range in Japan shrank by 90.9% between the 1910s and 2010s. In contrast, the closely related but resident Bull-headed Shrike L. bucephalus bucephalus has been gradually declining but is still a common resident in Japan. To better understand the drastic decline of Brown Shrike, we compared the pairing success during three consecutive breeding seasons of these two species. About 60–70% of Brown Shrike males were unpaired, which was much higher than the percentage of unpaired male Bull-headed Shrike (c.0–20%). Brown Shrike males arriving later did not pair because the population’s sex proportion is heavily biased toward males. One of the factors of male-biased population of Brown Shrike may be female-biased mortality in wintering sites, or on the migratory journey, and tracking studies will be required to test this.


Sign in / Sign up

Export Citation Format

Share Document