scholarly journals Numerical simulation of fuel staged swirl combustion in the invert furnace of boiler on advanced ultra-supercritical steam parameters

2021 ◽  
Vol 2088 (1) ◽  
pp. 012035
Author(s):  
V B Prokhorov ◽  
S L Chernov ◽  
V S Kirichkov ◽  
A A Kaverin ◽  
N E Fomenko

Abstract The paper considers the schemes of Kuznetsky lean coal combustion for the M-shaped boiler. With such a boiler profile, it is possible to significantly reduce the length of main steamlines, which is especially important for the advanced ultra-supercritical parameters of the superheated steam. The furnace in this boiler unit is performed downward (invert). In this work, the aerodynamics of 6 combustion schemes was simulated by means of computational fluid dynamics. All considered schemes were designed on the basis of direct-flow burners and nozzles. For the most aerodynamically reasonable scheme the thermal processes in the boiler furnace firing Kuznetsky lean coal have been simulated by means of computational hydrodynamics. The simulation results showed a high efficiency of fuel burnout: loss due to unburned combustible equaled 0.1%, carbon-in-ash loss equaled 0.8%. Carbon monoxide concentration at the furnace outlet in conversion to excess air equal α = 1.4 amounted 226 mg/m3, the nitrogen oxides concentration in the flue gases (in conversion to normal conditions) equaled 424 mg/m3. It is appropriate to use the results obtained in this research in the development of new solid fuels combustion schemes.

2017 ◽  
Vol 2017 (1) ◽  
pp. 72-82
Author(s):  
Екатерина Кондратьева ◽  
Ekaterina Kondrateva ◽  
Сергей Олейников ◽  
Sergey Oleynikov ◽  
Виктор Рассохин ◽  
...  

The paper reports the expediency and substantiation of the necessity for the gradual transition to power units on supercritical stream parameters in world power engineering. Basic stages in the development of steam turbine manufacturing with supercritical steam parameters are considered. The parameter increase at the input makes a profound impact upon the design of a flowing part of turbines. To operate a great difference in enthalpies in a cylinder without changing stages number one has to modernize them and sometimes to change the design completely. In the paper there is considered the expediency of the application of axial highloaded stages developed by the Polytechnics of Leningrad (LPI). There are also described the stages of designing steam turbine plants with critical and supercritical steam parameters at the input in a turbine. As an example there is analyzed SKR-100-300 steam turbine with the initial steam parameters of 29.4MPa and 650S. The results of solution computations directed to the efficiency increase of a regulatory stage of K-300-240 steam turbine with supercritical parameters of 580C and 29.0 MPa are presented. The application as a profile of an impeller the blade design of LPI allows increasing turbine plant efficiency in a wide range of mode parameters and also reducing a general number of turbine stages.


2014 ◽  
Vol 35 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Bartłomiej Hernik

Abstract Generally, the temperature of flue gases at the furnace outlet is not measured. Therefore, a special computation procedure is needed to determine it. This paper presents a method for coordination of the numerical model of a pulverised fuel boiler furnace chamber with the measuring data in a situation when CFD calculations are made in regard to the furnace only. This paper recommends the use of the classical 0-dimensional balance model of a boiler, based on the use of measuring data. The average temperature of flue gases at the furnace outlet tk" obtained using the model may be considered as highly reliable. The numerical model has to show the same value of tk" . This paper presents calculations for WR-40 boiler. The CFD model was matched to the 0-dimensional tk" value by means of a selection of the furnace wall emissivity. As a result of CFD modelling, the flue gas temperature and the concentration of CO, CO2, O2 and NOx were obtained at the furnace chamber outlet. The results of numerical modelling of boiler combustion based on volumetric reactions and using the Finite-Rate/Eddy-Dissipation Model are presented.


2013 ◽  
Vol 34 (4) ◽  
pp. 199-214
Author(s):  
Mateusz Brzęczek ◽  
Łukasz Bartela

Abstract This paper presents the parameters of the reference oxy combustion block operating with supercritical steam parameters, equipped with an air separation unit and a carbon dioxide capture and compression installation. The possibility to recover the heat in the analyzed power plant is discussed. The decision variables and the thermodynamic functions for the optimization algorithm were identified. The principles of operation of genetic algorithm and methodology of conducted calculations are presented. The sensitivity analysis was performed for the best solutions to determine the effects of the selected variables on the power and efficiency of the unit. Optimization of the heat recovery from the air separation unit, flue gas condition and CO2 capture and compression installation using genetic algorithm was designed to replace the low-pressure section of the regenerative water heaters of steam cycle in analyzed unit. The result was to increase the power and efficiency of the entire power plant.


2013 ◽  
Vol 34 (3) ◽  
pp. 89-104
Author(s):  
Andrzej Rusin ◽  
Marian Lipka ◽  
Henryk Łukowicz

Abstract The paper presents the results of the numerical analyses for the steam turbine rotor, dedicated for the newly-designed 900 MW steam unit with supercritical steam parameters (650 °C, 30.0 MPa). Basing on the design calculations, an optimal design solution was determined. Review of the available literature on materials for turbine rotors with supercritical steam parameters was done. Then the start-ups of the turbine were simulated. Thermal and strength states were analyzed. As a result, an optimal start-up characteristic was obtained.


2010 ◽  
Vol 44 (2) ◽  
pp. 127-136 ◽  
Author(s):  
A. G. Tumanovskii ◽  
M. Yu. Altukhov ◽  
A. L. Shvarts ◽  
G. D. Avrutskii ◽  
É. Kh. Verbovetskii ◽  
...  

2010 ◽  
Vol 31 (3) ◽  
pp. 19-36 ◽  
Author(s):  
Wiesław Zima ◽  
Sławomir Grądziel ◽  
Artur Cebula

Modelling of heat and flow phenomena occuring in waterwall tubes of boilers for supercritical steam parametersIn this paper a mathematical model enabling the analysis of the heat-flow phenomena occurring in the waterwalls of the combustion chambers of the boilers for supercritical parameters is proposed. It is a one-dimensional model with distributed parameters based on the solution of equations describing the conservation laws of mass, momentum, and energy. The purpose of the numerical calculations is to determine the distributions of the fluid enthalpy and the temperature of the waterwall pipes. This temperature should not exceed the calculation temperature for particular category of steel. The derived differential equations are solved using two methods: with the use of the implicit difference scheme, in which the mesh with regular nodes was applied, and using the Runge-Kutta method. The temperature distribution of the waterwall pipes is determined using the CFD. All thermophysical properties of the fluid and waterwall pipes are computed in real-time. The time-spatial heat transfer coefficient distribution is also computed in the on-line mode. The heat calculations for the combustion chamber are carried out with the use of the zone method, thus the thermal load distribution of the waterwalls is known. The time needed for the computations is of great importance when taking into consideration calculations carried out in the on-line mode. A correctly solved one-dimensional model ensures the appropriately short computational time.


Sign in / Sign up

Export Citation Format

Share Document