nabla derivative
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohamad Rafi Segi Rahmat ◽  
M. Salmi M. Noorani

AbstractIn this article, we introduce a new type of conformable derivative and integral which involve the time scale power function $\widehat{\mathcal{G}}_{\eta }(t, a)$ G ˆ η ( t , a ) for $t,a\in \mathbb{T}$ t , a ∈ T . The time scale power function takes the form $(t-a)^{\eta }$ ( t − a ) η for $\mathbb{T}=\mathbb{R}$ T = R which reduces to the definition of conformable fractional derivative defined by Khalil et al. (2014). For the discrete time scales, it is completely novel, where the power function takes the form $(t-a)^{(\eta )}$ ( t − a ) ( η ) which is an increasing factorial function suitable for discrete time scales analysis. We introduce a new conformable exponential function and study its properties. Finally, we consider the conformable dynamic equation of the form $\bigtriangledown _{a}^{\gamma }y(t)=y(t, f(t))$ ▽ a γ y ( t ) = y ( t , f ( t ) ) , and study the existence and uniqueness of the solution. As an application, we show that the conformable exponential function is the unique solution to the given dynamic equation. We also examine the analogue of Gronwall’s inequality and its application on time scales.


2016 ◽  
Vol 21 (4) ◽  
pp. 547-563 ◽  
Author(s):  
Zbigniew Bartosiewicz ◽  
Ülle Kotta ◽  
Tanel Mullari ◽  
Maris Tõnso ◽  
Ewa Pawluszewicz ◽  
...  

The backward shift and nabla derivative operators, defined by the control system on homogeneous time scale, in vector spaces of one-forms and vector fields are introduced and some of their properties are proven. In particular the formulas for components of the backward shift and nabla derivative of an arbitrary vector field are presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Jiang Zhu ◽  
Ling Wu

The definition of Caputo fractional derivative is given and some of its properties are discussed in detail. After then, the existence of the solution and the dependency of the solution upon the initial value for Cauchy type problem with fractional Caputo nabla derivative are studied. Also the explicit solutions to homogeneous equations and nonhomogeneous equations are derived by using Laplace transform method.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Özgür Yeniay ◽  
Öznur İşçi ◽  
Atilla Göktaş ◽  
M. Niyazi Çankaya

Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we consider the method of obtaining parameters of regression equation of integer values through time scale. Therefore, we implemented least squares method according to derivative definition of time scale and obtained coefficients related to the model. Here, there exist two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time scale theory would be a new vision in least square especially when assumptions of linear regression are violated.


Sign in / Sign up

Export Citation Format

Share Document