floc size distributions
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kate L. Spencer ◽  
Jonathan A. T. Wheatland ◽  
Andrew J. Bushby ◽  
Simon J. Carr ◽  
Ian G. Droppo ◽  
...  

AbstractNatural sediment flocs are fragile, highly irregular, loosely bound aggregates comprising minerogenic and organic material. They contribute a major component of suspended sediment load and are critical for the fate and flux of sediment, carbon and pollutants in aquatic environments. Understanding their behaviour is essential to the sustainable management of waterways, fisheries and marine industries. For several decades, modelling approaches have utilised fractal mathematics and observations of two dimensional (2D) floc size distributions to infer levels of aggregation and predict their behaviour. Whilst this is a computationally simple solution, it is highly unlikely to reflect the complexity of natural sediment flocs and current models predicting fine sediment hydrodynamics are not efficient. Here, we show how new observations of fragile floc structures in three dimensions (3D) demonstrate unequivocally that natural flocs are non-fractal. We propose that floc hierarchy is based on observations of 3D structure and function rather than 2D size distribution. In contrast to fractal theory, our data indicate that flocs possess characteristics of emergent systems including non-linearity and scale-dependent feedbacks. These concepts and new data to quantify floc structures offer the opportunity to explore new emergence-based floc frameworks which better represent natural floc behaviour and could advance our predictive capacity.


2016 ◽  
Vol 2 (1) ◽  
pp. 223-232 ◽  
Author(s):  
Yamuna S. Vadasarukkai ◽  
Graham A. Gagnon

In-line measurements of floc size distributions at different locations in a hydraulic flocculation tank using a holographic microscopy.


2016 ◽  
Vol 33 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Siwei Sun ◽  
Monroe Weber-Shirk ◽  
Leonard W. Lion

2015 ◽  
Vol 71 (7) ◽  
pp. 1073-1080 ◽  
Author(s):  
T. A. Cao ◽  
G. Van De Staey ◽  
I. Y. Smets

Although studied extensively, modeling fouling phenomena in membrane bioreactors (MBRs) remains challenging. It has been well established that cake layer formation and pore blocking have a strong impact on the filtration performance but how to capture that in comprehensive models is not fully defined yet. Since it has been shown that bioflocculation characteristics of activated sludge have a clear link with (the extent of) membrane fouling, this study integrates activated sludge floc size (i.e., particle size distribution) information in the model for pore blocking and cake layer formation with a focus on constant flux operated MBRs. Based on these floc size distributions, a three-dimensional modeling and visualization of the cake layer is envisaged which can then provide the required input information (e.g., the porosity of the cake layer) for the fouling model. The model is calibrated and validated on the basis of experimental data from Hwang et al. (2012) in ‘Membrane bioreactor: TMP rise and characterization of biocake structure using CLSM-image analysis’ (see J. Membr. Sci. 419–420, 33–41).


2012 ◽  
Vol 65 (1) ◽  
pp. 156-163 ◽  
Author(s):  
G. A. C. Ehlers ◽  
D. Wagachchi ◽  
S. J. Turner

Floc formation and settleability is critical for effective solid–liquid separation in many wastewater treatment processes. This study aimed to investigate the relationship between particle size distribution and nutrient conditions in different bioreactor configurations. Size distribution profiles of flocs that formed in continuous (B1), continuous with clarifier and return sludge (B2) and SBR (B3) reactors were investigated in parallel under identical nutrient conditions. An eight-fold dilution of the influent COD of a synthetic dairy processing wastewater resulted in a ‘feast and famine’ regime that triggered significant effects on the biomass and flocculation characteristics. Floc size analysis of reactor MLSS revealed a shift in floc sizes when reactors were fed with the minimum (famine) COD wastewater feed (0.61 g L−1). Increasing floc size distributions were detected for all reactors during the minimum COD feed although different size patterns were observed for different reactor configurations. These increases corresponded with variations in aggregation and EPS quantities. The SBR yielded comparatively larger flocs when operated under both COD feeds as indicated by d(0.9) values (90% of particles ≤ d in size). Overall the results indicated that floc formation and floc size are mediated by nutrient concentrations and represents an important step towards improved solid–liquid separation.


2008 ◽  
Vol 47 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Carole Coufort ◽  
Claire Dumas ◽  
Denis Bouyer ◽  
Alain Liné

Sign in / Sign up

Export Citation Format

Share Document