pyrite weathering
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 118 (42) ◽  
pp. e2026456118
Author(s):  
Shilei (李石磊) Li ◽  
Steven L. Goldstein ◽  
Maureen E. Raymo

Reconstructing Cenozoic history of continental silicate weathering is crucial for understanding Earth’s carbon cycle and greenhouse history. The question of whether continental silicate weathering increased during the late Cenozoic, setting the stage for glacial cycles, has remained controversial for decades. Whereas numerous independent proxies of weathering in ocean sediments (e.g., Li, Sr, and Os isotopes) have been interpreted to indicate that the continental silicate weathering rate increased in the late Cenozoic, beryllium isotopes in seawater have stood out as an important exception. Beryllium isotopes have been interpreted to indicate stable continental weathering and/or denudation rates over the last 12 Myr. Here we present a Be cycle model whose results show that variations in the 9Be weathering flux are counterbalanced by near-coastal scavenging while the cosmogenic 10Be flux from the upper atmosphere stays constant. As a result, predicted seawater 10Be/9Be ratios remain nearly constant even when global denudation and Be weathering rates increase by three orders of magnitude. Moreover, 10Be/9Be records allow for up to an 11-fold increase in Be weathering and denudation rates over the late Cenozoic, consistent with estimates from other proxies. The large increase in continental weathering indicated by multiple proxies further suggests that the increased CO2 consumption by continental weathering, driven by mountain-building events, was counterbalanced by other geological processes to prevent a runaway icehouse condition during the late Cenozoic. These processes could include enhanced carbonate dissolution via pyrite weathering, accelerated oxidation of fossil organic carbon, and/or reduced basalt weathering as the climate cooled.


Author(s):  
Kristina Åhlgren ◽  
Viktor Sjöberg ◽  
Bert Allard ◽  
Mattias Bäckström

AbstractWorldwide, black shales and shale waste are known to be a potential source of metals to the environment. This project demonstrates ongoing weathering and evaluates leaching processes at a 100-m-high shale waste deposit closed in the 1960s. Some deep parts of the deposit are still burning with temperatures exceeding 500 °C. To demonstrate ongoing weathering and leaching, analyses of groundwater and solid samples of shale and shale waste have been undertaken. Largest impact on groundwater quality was observed downstream the deposit, where elevated temperatures also indicate a direct impact from the burning waste deposit. Groundwater quality is largely controlled by pH and redox conditions (e.g., for arsenic, nickel, molybdenum, uranium and vanadium), and the mixture of different waste materials, including pyrite (acidic leachates) and carbonates (neutralizing and buffering pH). Analyses of shale waste from the deposit confirm the expected pyrite weathering with high concentrations of iron, nickel and uranium in the leachates. No general time trends could be distinguished for the groundwater quality from the monitoring in 2004–2019. This study has shown that black shale waste deposits can have a complex long-term impact on the surrounding environment.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Katarzyna Adamek ◽  
Michał Lupa ◽  
Mateusz Zawadzki

AbstractIllegal extraction of gold has grown to be a problem in many countries, causing the degradation of the environment. The main purpose of this paper is to investigate changes in tree cover and surface pollution. The development of a mine site has been observed and analysed with images acquired from Landsat and the Sentinel missions. The results of the study showed changes in the state of the environment, strongly suggesting the possibility of ongoing pyrite weathering processes and the transportation of clay materials down watercourses, which can cause not only the further deterioration of the environment but also slow down the natural regeneration of the forest. In addition, research has found disturbing changes in vegetation, showing a loss of tree cover in the Amazon Rainforest as high as 17%. The validity of using remote sensing methods to observe the development of individual mining sites and their characteristics was confirmed.


Science ◽  
2020 ◽  
Vol 370 (6515) ◽  
pp. eabb8092
Author(s):  
Xin Gu ◽  
Peter J. Heaney ◽  
Fabio D. A. Aarão Reis ◽  
Susan L. Brantley

Pyrite is a ubiquitous iron sulfide mineral that is oxidized by trace oxygen. The mineral has been largely absent from global sediments since the rise in oxygen concentration in Earth’s early atmosphere. We analyzed weathering in shale, the most common rock exposed at Earth’s surface, with chemical and microscopic analysis. By looking across scales from 10−9 to 102 meters, we determined the factors that control pyrite oxidation. Under the atmosphere today, pyrite oxidation is rate-limited by diffusion of oxygen to the grain surface and regulated by large-scale erosion and clast-scale fracturing. We determined that neither iron- nor sulfur-oxidizing microorganisms control global pyrite weathering fluxes despite their ability to catalyze the reaction. This multiscale picture emphasizes that fracturing and erosion are as important as atmospheric oxygen in limiting pyrite reactivity over Earth’s history.


2019 ◽  
Vol 36 (7) ◽  
pp. 600-611 ◽  
Author(s):  
Toby Samuels ◽  
David Pybus ◽  
Mark Wilkinson ◽  
Charles S. Cockell

2017 ◽  
Vol 36 (4) ◽  
pp. 479-494 ◽  
Author(s):  
Willemijn M. Appels ◽  
Susan N. Wall ◽  
S. Lee Barbour ◽  
M. Jim Hendry ◽  
Craig F. Nichol ◽  
...  

2014 ◽  
Vol 62 (4) ◽  
pp. 293-302 ◽  
Author(s):  
Thomas Fischer ◽  
Stella Gypser ◽  
Maria Subbotina ◽  
Maik Veste

Abstract In a recultivation area located in Brandenburg, Germany, five types of biocrusts (initial BSC1, developed BSC2 and BSC3, mosses, lichens) and non-crusted mineral substrate were sampled on tertiary sand deposited in 1985- 1986 to investigate hydrologic interactions between crust patches. Crust biomass was lowest in the non-crusted substrate, increased to the initial BSC1 and peaked in the developed BSC2, BSC3, the lichens and the mosses. Water infiltration was highest on the substrate, and decreased to BSC2, BSC1 and BSC3. Non-metric multidimensional scaling revealed that the lichens and BSC3 were associated with water soluble nutrients and with pyrite weathering products, thus representing a high nutrient low hydraulic feedback mode. The mosses and BSC2 represented a low nutrient high hydraulic feedback mode. These feedback mechanisms were considered as synergic, consisting of run-off generating (low hydraulic) and run-on receiving (high hydraulic) BSC patches. Three scenarios for BSC succession were proposed. (1) Initial BSCs sealed the surface until they reached a successional stage (represented by BSC1) from which the development into either of the feedback modes was triggered, (2) initial heterogeneities of the mineral substrate controlled the development of the feedback mode, and (3) complex interactions between lichens and mosses occurred at later stages of system development.


2008 ◽  
Vol 23 (12) ◽  
pp. 3783-3798 ◽  
Author(s):  
Claus Kohfahl ◽  
Paul L. Brown ◽  
Claire M. Linklater ◽  
Kai Mazur ◽  
Parviz Irannejad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document