clay materials
Recently Published Documents


TOTAL DOCUMENTS

313
(FIVE YEARS 86)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Boris Faybishenko ◽  
Yifeng Wang ◽  
Jon Harrington ◽  
Elena Tamayo-Mas ◽  
Jens Birkholzer ◽  
...  

AbstractUnderstanding gas migration in compacted clay materials, e.g., bentonite and claystone, is important for the design and performance assessment of an engineered barrier system of a radioactive waste repository system, as well as many practical applications. Existing field and laboratory data on gas migration processes in low-permeability clay materials demonstrate the complexity of flow and transport processes, including various types of instabilities, caused by nonlinear dynamics of coupled processes of liquid–gas exchange, dilation, fracturing, fracture healing, etc., which cannot be described by classical models of fluid dynamics in porous media. We here show that the complexity of gas migration processes can be explained using a phenomenological concept of nonlinear dynamics and deterministic chaos theory. To do so, we analyzed gas pressure and gas influx (i.e., input) and outflux (i.e., output), recorded during the gas injection experiment in the compact Mx80-D bentonite sample, and calculated a set of the diagnostic parameters of nonlinear dynamics and chaos, such a global embedding dimension, a correlation dimension, an information dimension, and a spectrum of Lyapunov exponents, as well as plotted 2D and 3D pseudo-phase-space strange attractors, based on the univariate influx and outflux time series data. These results indicate the presence of phenomena of low-dimensional deterministic chaotic behavior of gas migration in bentonite. In particular, during the onset of gas influx in the bentonite core, before the breakthrough, the development of gas flow pathways is characterized by the process of chaotic gas diffusion. After the breakthrough, with inlet-to-outlet movement of gas, the prevailing process is chaotic advection. During the final phase of the experiment, with no influx to the sample, the relaxation pattern of gas outflux is resumed back to a process of chaotic diffusion. The types of data analysis and a proposed phenomenological model can be used to establish the basic principles of experimental data-gathering, modeling predictions, and a research design.


Author(s):  
Yi Du ◽  
Coralie Brumaud ◽  
Guillaume Habert

Weak water resistance is a big obstacle for clay materials to overcome in modern construction industry. Compared to the hydraulic stabilized additives, bio-additives have a lower carbon footprint and have been used in many vernacular construction techniques to immobilize clay. In this work, the traditional recipes of tannin and iron have been revisited, in particular, the question of pH and iron solubility has been explored. Oak tannin and FeCl3 were chosen and their influence on the properties of clay materials in terms of rheological properties, compressive strength, and water resistance were characterized in the lab. Based on the results, tannin can reduce the yield stress of paste while with the addition of FeCl3, the yield stress of tannin dispersed pastes increased to a value similar to the reference sample but lower than the value contain only FeCl3. The increase was attributed to the complex reaction between tannin and Fe3+. The iron-tannin complexes can also increase the samples’ strength and water resistance. Although the complexes did not change the hydrophilic properties of the samples’ surface, they prevent the ingression of water. These results are very promising as they allow the production of a fluid earth material that is water-resistant. This opens a wide range of application potentials and can help to mainstream earth materials in construction.


2022 ◽  
Vol 314 ◽  
pp. 125619
Author(s):  
Yahor Trambitski ◽  
Olga Kizinievič ◽  
Viktor Kizinievič

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3662
Author(s):  
Irina G. Panova ◽  
Alexander A. Kiushov ◽  
Dolgor D. Khaydapova ◽  
Sergey B. Zezin ◽  
Maxim S. Arzhakov ◽  
...  

Wide usage of clay-based materials in industry requires investigations concerning efficient modification techniques to control their mechanical behavior in aqueous media. The challenging problem in this field involves minimization of the modifying agent content to provide marked changes in the operating characteristics of the material. In this work, the physicochemical, mechanical and structural aspects of the interaction of capillary water-saturated kaolinite with polyelectrolytes were studied. Modification of kaolinite with a negligible amount (0.1 wt.%) of hydrophilic and amphiphilic polyelectrolytes provides the control for rheological parameters of kaolinite suspensions such as storage and loss modulus in the range of three orders of magnitude. The results obtained reveal the wide possibilities for the production of a spectrum of clay materials using minor amounts of polymer modifying agents.


2021 ◽  
pp. 174425912110411
Author(s):  
Kazuma Fukui ◽  
Chiemi Iba ◽  
Madoka Taniguchi ◽  
Kouichi Takahashi ◽  
Daisuke Ogura

In this study, supercooling effects on the hygrothermal behavior of fired clay materials under various experimental conditions, such as water content, cooling rates, and size of specimens were investigated using experimental methods and hygrothermal simulations. We report results of the differential scanning calorimetry (DSC) and temperature distribution changes during a freeze–thaw (FT) experiment using unsaturated specimens. Also, we developed a numerical model of the freezing and thawing processes including the supercooling processes. The DSC results show the freezing of the supercooled water in a fired clay material is considerably faster than that in cement-based materials. It was also found that the dependency of the supercooling effects on the cooling rates seemed to be small. When the water saturation of a material decreases, the rate of the ice saturation increase during the freezing of the supercooled water is decreased while the freezing points of the supercooled water was not changed considerably. The comparison of the results of the FT experiment and hygrothermal simulations show that the combination of the existed hygrothermal model and a modified kinetic equation can reproduce the rapid temperature rise during the freezing of the supercooling water in the FT experiment. Finally, the size effects of specimens on the supercooling phenomenon was discussed based on the experimental and calculation results. The freezing points got higher when a specimen was larger. Due to differences in the ratio of the surface area to the volume, hygrothermal behavior in small specimens and relatively large specimens like that of the DSC and the FT experiment, respectively were markedly different. Water in a relatively large specimen with a small ratio of surface area to volume can achieve the thermodynamic equilibrium in a short period after the freezing starts.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1173
Author(s):  
Daniela Remonatto ◽  
Bárbara Ribeiro Ferrari ◽  
Juliana Cristina Bassan ◽  
Cassamo Ussemane Mussagy ◽  
Valéria de Carvalho Santos-Ebinuma ◽  
...  

Lipase is an important group of biocatalysts, which combines versatility and specificity, and can catalyze several reactions when applied in a high amount of industrial processes. In this study, the lipase produced by Aspergillus japonicus under submerged cultivation, was immobilized by physical adsorption, using clay supports, namely, diatomite, vermiculite, montmorillonite KSF (MKSF) and kaolinite. Besides, the immobilized and free enzyme was characterized, regarding pH, temperature and kinetic parameters. The most promising clay support was MKSF that presented 69.47% immobilization yield and hydrolytic activity higher than the other conditions studied (270.7 U g−1). The derivative produced with MKSF showed high stability at pH and temperature, keeping 100% of its activity throughout 12 h of incubation in the pH ranges between 4.0 and 9.0 and at a temperature from 30 to 50 °C. In addition, the immobilized lipase on MKSF support showed an improvement in the catalytic performance. The study shows the potential of using clays as support to immobilized lipolytic enzymes by adsorption method, which is a simple and cost-effective process.


Author(s):  
Nikolaos Alamanis ◽  
Philotheos Lokkas ◽  
Theodoros Chrysanidis ◽  
Dimitrios Christodoulou ◽  
Evangelos Paschalis

The factors that determine the geotechnical behavior of soils are mainly their composition, the size of their grains and their moisture content. The design of a soil structure or foundation project must ensure the shear adequacy of the soil in all phases of construction and throughout the life of the project. However, the shear strength, in general, of the soil is not "constant" but depends on key external factors such as the prehistory of loads, the time and succession of load states, the overpressure of the pore water as well as other factors such as relative density, or any preload, the pressure field, the rate of change of the intensive state, etc. The influence of the deformations as well as the change of the intensive state during the sampling should not be ignored. Unlike other materials, in clay materials the determination of shear strength and its interpretation is a very complex problem. The aim of this article is to search for the mechanical behavior of clay soils (lignite, kaolinite, marl) as shown by the laboratory illustration related with the problems on shear strength of materials, based on the results of experimental research


Author(s):  
Ahmed Zaghloul ◽  
Ridouan Benhiti ◽  
Rachid Aziam ◽  
Abdeljalil Ait Ichou ◽  
Mhamed Abali ◽  
...  

Increasing amount of organic dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost bio adsorbents. Different techniques have been used for the treatment of wastewater containing toxic dyes such as: biological degradation, oxidation, adsorption, reverse osmosis, and membrane filtration. Among all these processes mentioned, adsorption with low cost adsorbents has been recognized as one of the cost effective and efficient techniques for treatment of industrial wastewater from organic and inorganic pollutants. Clays as material adsorbents for the removal of various toxic dyes from aqueous solutions as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. This chapter presents a comprehensive account of the techniques used for the removal of industrial cationic and anionic dyes from water during the last 10 years with special reference to the adsorption by using low cost materials in decontamination processes. Effects of different adsorption parameters on the performance of clays as adsorbents have been also discussed. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.


2021 ◽  
Vol 892 ◽  
pp. 59-66
Author(s):  
Made Ery Arsana ◽  
I Nyoman Suamir ◽  
Sudirman ◽  
I Wayan Temaja ◽  
Ida Bagus Gde Widiantara

Plastic waste has been a major issue regarding waste in the world today. Plastic production in the world has reached 8300 million metric tons (Mt) from 1950 to 2015 and of about 6,300 Mt turned into waste. The development of industry and technology is often accompanied by the emergence of environmental impact issue. Encompassed plastic waste in nature causes problems, as it can drift from the land and fill the oceans around the world. Various plastic waste processing technologies have been introduced. Recycling plastic waste into goods, fuel oils and asphalt mixtures are things that have been done enormously. This research aims to make composite materials from used plastics, clay materials, and charcoal. A qualitative experimental method by heating the plastic waste below 270°C. Then, it is mixed with additional materials and casted the composite into a mold to form test specimens. Mechanical testing has been carried out to evaluate the composite. The results show that a composite material comprises plastic waste, clay and charcoal can provide maximum tensile strength of 14.59 N. The tested composite material is found to be 34.20% stronger than the material made of only plastic waste.


Sign in / Sign up

Export Citation Format

Share Document