prior shape
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Shangzhe Wu ◽  
Christian Rupprecht ◽  
Andrea Vedaldi

We propose a method to learn 3D deformable object categories from raw single-view images, without external supervision. The method is based on an autoencoder that factors each input image into depth, albedo, viewpoint and illumination. In order to disentangle these components without supervision, we use the fact that many object categories have, at least approximately, a symmetric structure. We show that reasoning about illumination allows us to exploit the underlying object symmetry even if the appearance is not symmetric due to shading. Furthermore, we model objects that are probably, but not certainly, symmetric by predicting a symmetry probability map, learned end-to-end with the other components of the model. Our experiments show that this method can recover very accurately the 3D shape of human faces, cat faces and cars from single-view images, without any supervision or a prior shape model. Code and demo available at https://github.com/elliottwu/unsup3d.


2021 ◽  
Vol 68 ◽  
pp. 102671
Author(s):  
Junchi Lu ◽  
Chaolu Feng ◽  
Jinzhu Yang ◽  
Wei Li ◽  
Dazhe Zhao ◽  
...  

2021 ◽  
Author(s):  
Yun Jia

In this research, an image segmentation method based on active contouring model was studied, which incorporates the prior shape into the active contour evolving process as the global constraint. The active contour model is implemented based on the level set method. The prior shape regulates the behavior of the active contour and keeps it from leaking out of the weak edges. The goal of this research is to determine the displacement and alignment between two fractured pieces of a bone which is encased in the cast material by segmenting them out and calculating their axes difference. The noise introduced by the cast material makes this task difficult. Morphological operations of dilation and erosion are deployed in this research as the noise reduction and edge detection tool. Experiment results are obtained successfully by applying this method upon the X-ray images of patients' fractured arm.


2021 ◽  
Author(s):  
Yun Jia

In this research, an image segmentation method based on active contouring model was studied, which incorporates the prior shape into the active contour evolving process as the global constraint. The active contour model is implemented based on the level set method. The prior shape regulates the behavior of the active contour and keeps it from leaking out of the weak edges. The goal of this research is to determine the displacement and alignment between two fractured pieces of a bone which is encased in the cast material by segmenting them out and calculating their axes difference. The noise introduced by the cast material makes this task difficult. Morphological operations of dilation and erosion are deployed in this research as the noise reduction and edge detection tool. Experiment results are obtained successfully by applying this method upon the X-ray images of patients' fractured arm.


2021 ◽  
Vol 11 (5) ◽  
pp. 364
Author(s):  
Bingjiang Qiu ◽  
Hylke van der van der Wel ◽  
Joep Kraeima ◽  
Haye Hendrik Glas ◽  
Jiapan Guo ◽  
...  

Accurate mandible segmentation is significant in the field of maxillofacial surgery to guide clinical diagnosis and treatment and develop appropriate surgical plans. In particular, cone-beam computed tomography (CBCT) images with metal parts, such as those used in oral and maxillofacial surgery (OMFS), often have susceptibilities when metal artifacts are present such as weak and blurred boundaries caused by a high-attenuation material and a low radiation dose in image acquisition. To overcome this problem, this paper proposes a novel deep learning-based approach (SASeg) for automated mandible segmentation that perceives overall mandible anatomical knowledge. SASeg utilizes a prior shape feature extractor (PSFE) module based on a mean mandible shape, and recurrent connections maintain the continuity structure of the mandible. The effectiveness of the proposed network is substantiated on a dental CBCT dataset from orthodontic treatment containing 59 patients. The experiments show that the proposed SASeg can be easily used to improve the prediction accuracy in a dental CBCT dataset corrupted by metal artifacts. In addition, the experimental results on the PDDCA dataset demonstrate that, compared with the state-of-the-art mandible segmentation models, our proposed SASeg can achieve better segmentation performance.


Sign in / Sign up

Export Citation Format

Share Document