mandible shape
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 21)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Aurélien Lowie ◽  
Barbara De Kegel ◽  
Mark Wilkinson ◽  
John Measey ◽  
James C. O'Reilly ◽  
...  

Caecilians are enigmatic limbless amphibians that, with a few exceptions all have an at least partly burrowing lifestyle. Although it has been suggested that caecilian evolution resulted in sturdy and compact skulls as an adaptation to their head-first burrowing habits, no relationship between skull shape and burrowing performance has been demonstrated to date. However, the unique dual jaw-closing mechanism and the osteological variability of their temporal region suggest a potential relationship between skull shape and feeding mechanics. Here, we explored the relationships between skull shape, head musculature, and in vivo bite forces. Although there is a correlation between bite force and external head shape, no relationship between bite force and skull shape could be detected. Whereas our data suggest that muscles are the principal drivers of variation in bite force, the shape of the skull is constrained by factors other than demands for bite force generation. However, a strong covariation between the cranium and mandible exists. Moreover, both cranium and mandible shape covary with jaw muscle architecture. Caecilians show a gradient between species with a long retroarticular process associated with a large and pennate-fibered m. interhyoideus posterior and species with a short process but long and parallel-fibered jaw adductors. Our results demonstrate the complexity of the relationship between form and function of this jaw system. Further studies that focus on factors such as gape distance or jaw velocity will be needed in order to fully understand the evolution of feeding mechanics in caecilians.


2021 ◽  
Vol 34 (10) ◽  
pp. 1637-1652
Author(s):  
Morgane Dubied ◽  
Sophie Montuire ◽  
Nicolas Navarro
Keyword(s):  

Author(s):  
Nicolás Vila-Blanco ◽  
Paulina Varas-Quintana ◽  
Ángela Aneiros-Ardao ◽  
Inmaculada Tomás ◽  
María J. Carreira

Abstract Purpose The shape of the mandible has been analyzed in a variety of fields, whether to diagnose conditions like osteoporosis or osteomyelitis, in forensics, to estimate biological information such as age, gender, and race or in orthognathic surgery. Although the methods employed produce encouraging results, most rely on the dry bone analyses or complex imaging techniques that, ultimately, hamper sample collection and, as a consequence, the development of large-scale studies. Thus, we proposed an objective, repeatable, and fully automatic approach to provide a quantitative description of the mandible in orthopantomographies (OPGs). Methods We proposed the use of a deep convolutional neural network (CNN) to localize a set of landmarks of the mandible contour automatically from OPGs. Furthermore, we detailed four different descriptors for the mandible shape to be used for a variety of purposes. This includes a set of linear distances and angles calculated from eight anatomical landmarks of the mandible, the centroid size, the shape variations from the mean shape, and a group of shape parameters extracted with a point distribution model. Results The fully automatic digitization of the mandible contour was very accurate, with a mean point to the curve error of 0.21 mm and a standard deviation comparable to that of a trained expert. The combination of the CNN and the four shape descriptors was validated in the well-known problems of forensic sex and age estimation, obtaining 87.8% of accuracy and a mean absolute error of 1.57 years, respectively. Conclusion The methodology proposed, including the shape model, can be valuable in any field that requires a quantitative description of the mandible shape and a visual representation of its changes such as clinical practice, surgery management, dental research, or legal medicine.


2021 ◽  
Vol 79 ◽  
pp. 189-204
Author(s):  
Diego N. Barbosa

Abstract A cladistic analysis based on 120 morphological characters and 72 OTUs was conducted for the flat wasp genus Anisepyris Kieffer. The genus is mainly Neotropical region with few Nearctic species. The analysis retrieved well-supported relationships among the Anisepyris species and exposed the distribution of synapomorphies among the lineages, particularly concerning the mandible shape, dorsal pronotal area sulcus, and mesopleural foveae. The main diagnostic characters, described by Barbosa and Azevedo (2018) for the 13 species-groups of Anisepyris, were scrutinized. Transformation series and evolutionary hypotheses were also discussed. This discussion elucidates the importance of each character in the evolution and diversification along the different lineages. A discussion on the species-groups distribution is proposed, in relation to their diagnostic features. A hypothesis about the original distribution and the subsequent diversifications was also discussed. In conclusion, due to a possible recent origin for Anisepyris species, the dispersion could be related primarily to dense forest areas; and the retrieved synapomorphies could be related to posterior distributions of the species in disparate areas from their original environment.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1611
Author(s):  
Cesare Pacioni ◽  
Francesca Mercati ◽  
Andrea Catorci ◽  
Andrea Brusaferro ◽  
Diederik Strubbe ◽  
...  

The analysis of body shape variability has always been a central element in biology. More recently, geometric morphometry has developed as a new field in shape analysis, with the aim to study body morphological variations and the identification of their causes. In wildlife management, geometric morphometry could be a useful tool to compare the anatomical structures of an organism and quantify its geometric information in order to relate them to environmental factors, thus identifying the causes and effects of the variation and acting management and/or conservation plans. The aim of our study is to evaluate the relationship between roe deer mandible shape and trophic resources available during autumn and winter. We applied a geometric morphometry approach consisting of a Relative Warp analysis of landmark data in 26 roe deer fawn mandibles. Each sample was assigned to an age category and to an environmental category based on the territory carrying capacity. The mandible shape of samples under 8 months of age is likely influenced by the availability of trophic resources. Our findings suggest that the mandible shape is a reliable instrument to assess resource availability. Geometric morphometry could thus represent an additional tool for roe deer management.


2021 ◽  
Vol 11 (5) ◽  
pp. 364
Author(s):  
Bingjiang Qiu ◽  
Hylke van der van der Wel ◽  
Joep Kraeima ◽  
Haye Hendrik Glas ◽  
Jiapan Guo ◽  
...  

Accurate mandible segmentation is significant in the field of maxillofacial surgery to guide clinical diagnosis and treatment and develop appropriate surgical plans. In particular, cone-beam computed tomography (CBCT) images with metal parts, such as those used in oral and maxillofacial surgery (OMFS), often have susceptibilities when metal artifacts are present such as weak and blurred boundaries caused by a high-attenuation material and a low radiation dose in image acquisition. To overcome this problem, this paper proposes a novel deep learning-based approach (SASeg) for automated mandible segmentation that perceives overall mandible anatomical knowledge. SASeg utilizes a prior shape feature extractor (PSFE) module based on a mean mandible shape, and recurrent connections maintain the continuity structure of the mandible. The effectiveness of the proposed network is substantiated on a dental CBCT dataset from orthodontic treatment containing 59 patients. The experiments show that the proposed SASeg can be easily used to improve the prediction accuracy in a dental CBCT dataset corrupted by metal artifacts. In addition, the experimental results on the PDDCA dataset demonstrate that, compared with the state-of-the-art mandible segmentation models, our proposed SASeg can achieve better segmentation performance.


2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Anne-Claire Fabre ◽  
Carys Dowling ◽  
Roberto Portela Miguez ◽  
Vincent Fernandez ◽  
Eve Noirault ◽  
...  

Differences in jaw function experienced through ontogeny can have striking consequences for evolutionary outcomes, as has been suggested for the major clades of mammals. By contrast to placentals, marsupial newborns have an accelerated development of the head and forelimbs, allowing them to crawl to the mother's teats to suckle within just a few weeks of conception. The different functional requirements that marsupial newborns experience in early postnatal development have been hypothesized to have constrained their morphological diversification relative to placentals. Here, we test whether marsupials have a lower ecomorphological diversity and rate of evolution in comparison with placentals, focusing specifically on their jaws. To do so, a geometric morphometric approach was used to characterize jaw shape for 151 living and extinct species of mammals spanning a wide phylogenetic, developmental and functional diversity. Our results demonstrate that jaw shape is significantly influenced by both reproductive mode and diet, with substantial ecomorphological convergence between metatherians and eutherians. However, metatherians have markedly lower disparity and rate of mandible shape evolution than observed for eutherians. Thus, despite their ecomorphological diversity and numerous convergences with eutherians, the evolution of the jaw in metatherians appears to be strongly constrained by their specialized reproductive biology.


2021 ◽  
Vol 224 (5) ◽  
Author(s):  
Colline Brassard ◽  
Marilaine Merlin ◽  
Elodie Monchâtre-Leroy ◽  
Claude Guintard ◽  
Jacques Barrat ◽  
...  

ABSTRACT The jaw system in canids is essential for defence and prey acquisition. However, how it varies in wild species in comparison with domestic species remains poorly understood, yet is of interest in terms of understanding the impact of artificial selection. Here, we explored the variability and interrelationships between the upper and lower jaws, muscle architecture and bite force in the red fox (Vulpes vulpes). We performed dissections and used 3D geometric morphometric approaches to quantify jaw shape in 68 foxes. We used a static lever model and bite force estimates were compared with in vivo measurements of 10 silver foxes. Our results show strong relationships exist between cranial and mandible shape, and between cranial or mandible shape on the one hand and muscles or estimated bite force on the other hand, confirming the strong integration of the bony and muscular components of the jaw system. These strong relationships are strongly driven by size. The functional links between shape and estimated bite force are stronger for the mandible, which probably reflects its greater specialisation towards biting. We then compared our results with data previously obtained for dogs (Canis lupus familiaris) to investigate the effect of domestication. Foxes and dogs differ in skull shape and muscle physiological cross-sectional area (PCSA). They show a similar amount of morphological variation in muscle PCSA, but foxes show lower variation in cranial and mandible shape. Interestingly, the patterns of covariation are not stronger in foxes than in dogs, suggesting that domestication did not lead to a disruption of the functional links of the jaw system.


Author(s):  
Boris Kryštufek ◽  
Georgy Shenbrot ◽  
Tina Klenovšek ◽  
Franc Janžekovič

Abstract We explore the pattern of spatial variation in mandibular morphology in relation to subspecific taxonomy in the dwarf fat-tailed jerboa, Pygeretmus pumilio. The unguided k-means clustering on mandible shape scores, partitioned populations into two clusters, corresponding to western and eastern populations. These clusters nearly perfectly matched the two subspecies groups (pumilio and potanini groups) recognized in an independent study based on the morphology of the glans penis. The mandible, although under environmental pressure, has retained a sufficient amount of taxonomic information to retrieve grouping closely resembling the one derived from a sexually selective trait. We recommend morphometrics of the mandible as a routine step in addressing variations in mammals at species and subspecies levels. We also stress the advantage of unsupervised k-clustering in testing null expectation in subspecies taxonomies. However, the power of this approach has its limitations and in our analysis, the k-clustering failed to retrieve subspecies in the potanini group.


Sign in / Sign up

Export Citation Format

Share Document