triangulation number
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2191
Author(s):  
David P. Wilson ◽  
Danielle A. Roof

We introduce Viral Phrenology, a new scheme for understanding the genomic composition of spherical viruses based on the locations of their structural protrusions. We used icosahedral point arrays to classify 135 distinct viral capsids collected from over 600 capsids available in the VIPERdb. Using gauge points of point arrays, we found 149 unique structural protrusions. We then show how to use the locations of these protrusions to determine the genetic composition of the virus. We then show that ssDNA, dsDNA, dsRNA and ssRNA viruses use different arrangements for distributing their protrusions. We also found that Triangulation number is also partially dependent on the structural protrusions. This analysis begins to tie together Baltimore Classification and Triangulation number using point arrays.


2021 ◽  
Author(s):  
David P Wilson ◽  
Danielle Roof

We introduce Viral Phrenology, a new scheme for understanding the genomic composition of spherical viruses base on the locations of their structural protrusions. We used icosahedral point arrays to classify 135 distinct viral capsids collected from over 600 capsids available in the VIPERdb. Using gauge points of point arrays, we found 149 unique structural protrusions. We then show how to use the locations of these protrusions to determine the genetic composition of the virus. We then show that ssDNA, dsDNA, dsRNA and ssRNA viruses use different arrangements for distributing their protrusions. We also found that Triangulation number is also partially dependent on the structural protrusions. This analysis begins to tie together Baltimore classification and Triangulation number using point arrays.


2020 ◽  
Vol 101 (11) ◽  
pp. 1219-1226 ◽  
Author(s):  
Emmanuelle Neumann ◽  
Takeru Kawasaki ◽  
Grégory Effantin ◽  
Leandro F. Estrozi ◽  
Orawan Chatchawankanphanich ◽  
...  

Jumbo phages are bacteriophages that carry more than 200 kbp of DNA. In this study we characterized two jumbo phages (ΦRSL2 and ΦXacN1) and one semi-jumbo phage (ΦRP13) at the structural level by cryo-electron microscopy. Focusing on their capsids, three-dimensional structures of the heads at resolutions ranging from 16 to 9 Å were calculated. Based on these structures we determined the geometrical basis on which the icosahedral capsids of these phages are constructed, which includes the accessory and decorative proteins that complement them. A triangulation number novel to Myoviridae (ΦRP13; T=21) was discovered as well as two others, which are more common for jumbo phages (T=27 and T=28). Based on one of the structures we also provide evidence that accessory or decorative proteins are not a prerequisite for maintaining the structural integrity of very large capsids.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 467
Author(s):  
David P. Wilson

Since its introduction, the Triangulation number has been the most successful and ubiquitous scheme for classifying spherical viruses. However, despite its many successes, it fails to describe the relative angular orientations of proteins, as well as their radial mass distribution within the capsid. It also fails to provide any critical insight into sites of stability, modifications or possible mutations. We show how classifying spherical viruses using icosahedral point arrays, introduced by Keef and Twarock, unveils new geometric rules and constraints for understanding virus stability and key locations for exterior and interior modifications. We present a modified fitness measure which classifies viruses in an unambiguous and rigorous manner, irrespective of local surface chemistry, steric hinderance, solvent accessibility or Triangulation number. We then use these point arrays to explain the immutable surface loops of bacteriophage MS2, the relative reactivity of surface lysine residues in CPMV and the non-quasi-equivalent flexibility of the HBV dimers. We then explain how point arrays can be used as a predictive tool for site-directed modifications of capsids. This success builds on our previous work showing that viruses place their protruding features along the great circles of the asymmetric unit, demonstrating that viruses indeed adhere to these geometric constraints.


Author(s):  
David Wilson

Since its introduction, the Triangulation number has been the most successful and ubiquitous scheme for classifying spherical viruses. However, despite its many successes, it fails to describe the relative angular orientations of proteins, as well as their radial mass distribution within the capsid. It also fails to provide any insight into critical sites of stability, modifications or possible mutations. We show how classifying spherical viruses using icosahedral point arrays, introduced by Keef and Twarock, unveils new geometric rules and constraints for understanding virus stability and key locations for exterior and interior modifications. We present a modified fitness measure which classifies viruses in an unambiguous and rigorous manner, irrespective of local surface chemistry, steric hinderance, solvent accessibility or triangulation number. We then utilize these point arrays to explain the immutable surface loops of bacteriophage MS2, the relative reactivity of surface lysines in CPMV and the non-quasiequivalent flexibility of the HBV dimers. We explain how using sister and double point arrays can function as predictive tools for site directed modifications in other systems. This success builds on our previous work showing that viruses place their protruding features along the great circles of the asymmetric unit, demonstrating that viruses indeed adhere to these geometric constraints.


2017 ◽  
Author(s):  
Kenta Okamoto ◽  
Naoyuki Miyazaki ◽  
Hemanth K.N. Reddy ◽  
Max F. Hantke ◽  
Filipe R.N.C. Maia ◽  
...  

AbstractNucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, fam. Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the largest known triangulation number (T=309) for a virus. The 230-nm particle is constructed by 3080 pseudo-hexagonal capsomers and encloses a membrane bilayer. Its most distinct feature is a large dense body (LDB) consistently found in all particles. Electron cryo-tomography of 147 particles showed that the LDB is located preferentially in proximity to the bilayer. The LDB is 30 nm in size and its density matches that of a genome/protein complex. More than 58 proteins are associated with the purified particle, including histone-like proteins, putative membrane proteins and capsid proteins. The observed intricate structural organization reinforces the genetic complexity of MelV, setting it apart from other viruses, and suggests an evolutionary link with cellular organisms.


Virology ◽  
2014 ◽  
Vol 450-451 ◽  
pp. 205-212 ◽  
Author(s):  
M. Elizabeth Stroupe ◽  
Tess E. Brewer ◽  
Duncan R. Sousa ◽  
Kathryn M. Jones

2008 ◽  
Vol 82 (6) ◽  
pp. 2844-2852 ◽  
Author(s):  
Sonia Libersou ◽  
Xavier Siebert ◽  
Malika Ouldali ◽  
Leandro F. Estrozi ◽  
Jorge Navaza ◽  
...  

ABSTRACT Rotaviruses are prototypical double-stranded RNA viruses whose triple-layered icosahedral capsid constitutes transcriptional machinery activated by the release of the external layer. To understand the molecular basis of this activation, we studied the structural interplay between the three capsid layers by electron cryo-microscopy and digital image processing. Two viral particles and four virus-like particles containing various combinations of inner (VP2)-, middle (VP6)-, and outer (VP7)-layer proteins were studied. We observed that the absence of the VP2 layer increases the particle diameter and changes the type of quasi-equivalent icosahedral symmetry, as described by the shift in triangulation number (T) of the VP6 layer (from T = 13 to T = 19 or more). By fitting X-ray models of VP6 into each reconstruction, we determined the quasi-atomic structures of the middle layers. These models showed that the VP6 lattices, i.e., curvature and trimer contacts, are characteristic of the particle composition. The different functional states of VP6 thus appear as being characterized by trimers having similar conformations but establishing different intertrimeric contacts. Remarkably, the external protein VP7 reorients the VP6 trimers located around the fivefold axes of the icosahedral capsid, thereby shrinking the channel through which mRNA exits the transcribing rotavirus particle. We conclude that the constraints arising from the different geometries imposed by the external and internal layers of the rotavirus capsid constitute a potential switch regulating the transcription activity of the viral particles.


2008 ◽  
Vol 9 (3-4) ◽  
pp. 197-210 ◽  
Author(s):  
J. Bernard Heymann ◽  
Carmen Butan ◽  
Dennis C. Winkler ◽  
Rebecca C. Craven ◽  
Alasdair C. Steven

Whereas many viruses have capsids of uniquely defined sizes that observe icosahedral symmetry, retrovirus capsids are highly polymorphic. Nevertheless, they may also be described as polyhedral foldings of a fullerene lattice on which the capsid protein (CA) is arrayed. Lacking the high order of symmetry that facilitates the reconstruction of icosahedral capsids from cryo-electron micrographs, the 3D structures of individual retrovirus capsids may be determined by cryo-electron tomography, albeit at lower resolution. Here, we describe computational and graphical methods used to construct polyhedral models that match in size and shape, capsids of Rous sarcoma virus (RSV) observed within intact virions. The capsids fall into several shape classes, including tubes, ‘lozenges’ and ‘coffins’. The extent to which a capsid departs from icosahedral symmetry reflects the irregularity of the distribution of pentamers, which are always 12 in number for a closed polyhedral capsid. The number of geometrically distinct polyhedra grows rapidly with increasing quotas of hexamers, and ranks in the millions for particles in the size range of RSV capsids, which typically have 150–300 hexamers. Unlike the CAs of icosahedral viruses that assume a minimal number of quasi-equivalent conformations equal to the triangulation number (T), retroviral CAs exhibit a near-continuum of quasi-equivalent conformations – a property that may be attributed to the flexible hinge linking the N- and C-terminal domains.


Sign in / Sign up

Export Citation Format

Share Document