scholarly journals Cryo-EM of a Marseilleviridae virus particle reveals a large internal microassembly

2017 ◽  
Author(s):  
Kenta Okamoto ◽  
Naoyuki Miyazaki ◽  
Hemanth K.N. Reddy ◽  
Max F. Hantke ◽  
Filipe R.N.C. Maia ◽  
...  

AbstractNucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, fam. Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the largest known triangulation number (T=309) for a virus. The 230-nm particle is constructed by 3080 pseudo-hexagonal capsomers and encloses a membrane bilayer. Its most distinct feature is a large dense body (LDB) consistently found in all particles. Electron cryo-tomography of 147 particles showed that the LDB is located preferentially in proximity to the bilayer. The LDB is 30 nm in size and its density matches that of a genome/protein complex. More than 58 proteins are associated with the purified particle, including histone-like proteins, putative membrane proteins and capsid proteins. The observed intricate structural organization reinforces the genetic complexity of MelV, setting it apart from other viruses, and suggests an evolutionary link with cellular organisms.

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1574
Author(s):  
Julia E. Hölper ◽  
Finn Grey ◽  
John Kenneth Baillie ◽  
Tim Regan ◽  
Nicholas J. Parkinson ◽  
...  

Herpesviruses are large DNA viruses, which encode up to 300 different proteins including enzymes enabling efficient replication. Nevertheless, they depend on a multitude of host cell proteins for successful propagation. To uncover cellular host factors important for replication of pseudorabies virus (PrV), an alphaherpesvirus of swine, we performed an unbiased genome-wide CRISPR/Cas9 forward screen. To this end, a porcine CRISPR-knockout sgRNA library (SsCRISPRko.v1) targeting 20,598 genes was generated and used to transduce porcine kidney cells. Cells were then infected with either wildtype PrV (PrV-Ka) or a PrV mutant (PrV-gD–Pass) lacking the receptor-binding protein gD, which regained infectivity after serial passaging in cell culture. While no cells survived infection with PrV-Ka, resistant cell colonies were observed after infection with PrV-gD–Pass. In these cells, sphingomyelin synthase 1 (SMS1) was identified as the top hit candidate. Infection efficiency was reduced by up to 90% for PrV-gD–Pass in rabbit RK13-sgms1KO cells compared to wildtype cells accompanied by lower viral progeny titers. Exogenous expression of SMS1 partly reverted the entry defect of PrV-gD–Pass. In contrast, infectivity of PrV-Ka was reduced by 50% on the knockout cells, which could not be restored by exogenous expression of SMS1. These data suggest that SMS1 plays a pivotal role for PrV infection, when the gD-mediated entry pathway is blocked.


2020 ◽  
Vol 48 (4) ◽  
pp. 1569-1581 ◽  
Author(s):  
Gwenny Cackett ◽  
Michal Sýkora ◽  
Finn Werner

African swine fever virus (ASFV) represents a severe threat to global agriculture with the world's domestic pig population reduced by a quarter following recent outbreaks in Europe and Asia. Like other nucleocytoplasmic large DNA viruses, ASFV encodes a transcription apparatus including a eukaryote-like RNA polymerase along with a combination of virus-specific, and host-related transcription factors homologous to the TATA-binding protein (TBP) and TFIIB. Despite its high impact, the molecular basis and temporal regulation of ASFV transcription is not well understood. Our lab recently applied deep sequencing approaches to characterise the viral transcriptome and gene expression during early and late ASFV infection. We have characterised the viral promoter elements and termination signatures, by mapping the RNA-5′ and RNA-3′ termini at single nucleotide resolution. In this review, we discuss the emerging field of ASFV transcripts, transcription, and transcriptomics.


2021 ◽  
Author(s):  
Ian M Rambo ◽  
Valerie De Anda ◽  
Marguerite V Langwig ◽  
Brett J Baker

Asgard archaea are newly described microbes that are related to eukaryotes. Asgards are diverse and globally distributed, however, their viruses have not been described. Here we characterize seven viral genomes that infected Lokiarchaeota, Helarchaeota, and Thorarchaeota in deep-sea hydrothermal sediments. These viruses code for structural proteins similar to those in Caudovirales, as well as proteins distinct from those described in archaeal viruses. They also have genes common in eukaryotic nucleocytoplasmic large DNA viruses (NCLDVs), and are predicted to be capable of semi-autonomous genome replication, repair, epigenetic modifications, and transcriptional regulation. Moreover, Helarchaeota viruses may hijack host ubiquitin systems similar to eukaryotic viruses. This first glimpse of Asgard viruses reveals they have features of both prokaryotic and eukaryotic viruses, and provides insights into their roles in the ecology and evolution of these globally distributed microbes.


Pathogens ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 146 ◽  
Author(s):  
Davide Mugetti ◽  
Paolo Pastorino ◽  
Vasco Menconi ◽  
Claudio Pedron ◽  
Marino Prearo

Although sturgeon production by aquaculture has increased worldwide, a major factor limiting its expansion are infectious diseases, although few data about viral diseases are available however. This review provides a rapid overview of viral agents detected and described to date. Following a general introduction on viral diseases are four sections arranged by virus classification: sturgeon nucleocytoplasmic large DNA viruses, herpesviruses, white sturgeon adenovirus 1, and other viruses. Molecular diagnosis is currently the best tool to detect viral diseases, since cell culture isolation is not yet applicable for the detection of most sturgeon viruses.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dmitrii Zabelskii ◽  
Alexey Alekseev ◽  
Kirill Kovalev ◽  
Vladan Rankovic ◽  
Taras Balandin ◽  
...  

Abstract Phytoplankton is the base of the marine food chain as well as oxygen and carbon cycles and thus plays a global role in climate and ecology. Nucleocytoplasmic Large DNA Viruses that infect phytoplankton organisms and regulate the phytoplankton dynamics encompass genes of rhodopsins of two distinct families. Here, we present a functional and structural characterization of two proteins of viral rhodopsin group 1, OLPVR1 and VirChR1. Functional analysis of VirChR1 shows that it is a highly selective, Na+/K+-conducting channel and, in contrast to known cation channelrhodopsins, it is impermeable to Ca2+ ions. We show that, upon illumination, VirChR1 is able to drive neural firing. The 1.4 Å resolution structure of OLPVR1 reveals remarkable differences from the known channelrhodopsins and a unique ion-conducting pathway. Thus, viral rhodopsins 1 represent a unique, large group of light-gated channels (viral channelrhodopsins, VirChR1s). In nature, VirChR1s likely mediate phototaxis of algae enhancing the host anabolic processes to support virus reproduction, and therefore, might play a major role in global phytoplankton dynamics. Moreover, VirChR1s have unique potential for optogenetics as they lack possibly noxious Ca2+ permeability.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
S Clouthier ◽  
E Anderson ◽  
G Kurath ◽  
R Breyta

Abstract Namao virus (NV) is a sturgeon nucleocytoplasmic large DNA virus (sNCLDV) that can cause a lethal disease of the integumentary system in lake sturgeon Acipenser fulvescens. As a group, the sNCLDV have not been assigned to any currently recognized taxonomic family of viruses. In this study, a dataset of NV DNA sequences was generated and assembled as two non-overlapping contigs of 306 and 448 base pairs (bp) and then used to conduct a comprehensive systematics analysis using Bayesian phylogenetic inference for NV, other sNCLDV, and representative members of six families of the NCLDV superfamily. The phylogeny of NV was reconstructed using protein homologues encoded by nine nucleocytoplasmic virus orthologous genes (NCVOGs): NCVOG0022—mcp, NCVOG0038—DNA polymerase B elongation subunit, NCVOG0076—VV A18-type helicase, NCVOG0249—VV A32-type ATPase, NCVOG0262—AL2 VLTF3-like transcription factor, NCVOG0271—RNA polymerase II subunit II, NCVOG0274—RNA polymerase II subunit I, NCVOG0276—ribonucleotide reductase small subunit, and NCVOG1117—mRNA capping enzyme. The accuracy of our phylogenetic method was evaluated using a combination of Bayesian statistical analysis and congruence analysis. Stable tree topologies were obtained with datasets differing in target molecule(s), sequence length, and taxa. Congruent topologies were obtained in phylogenies constructed using individual protein datasets and when four proteins were used in a concatenated approach. The major capsid protein phylogeny indicated that ten representative sNCLDV form a monophyletic group comprised of four lineages within a polyphyletic Mimi-Phycodnaviridae group of taxa. Overall, the analyses revealed that Namao virus is a member of the Mimiviridae family with strong and consistent support for a clade containing NV and CroV as sister taxa.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1840 ◽  
Author(s):  
Eugene V. Koonin ◽  
Natalya Yutin

The nucleocytoplasmic large DNA viruses (NCLDVs) are a monophyletic group of diverse eukaryotic viruses that reproduce primarily in the cytoplasm of the infected cells and include the largest viruses currently known: the giant mimiviruses, pandoraviruses, and pithoviruses. With virions measuring up to 1.5 μm and genomes of up to 2.5 Mb, the giant viruses break the now-outdated definition of a virus and extend deep into the genome size range typical of bacteria and archaea. Additionally, giant viruses encode multiple proteins that are universal among cellular life forms, particularly components of the translation system, the signature cellular molecular machinery. These findings triggered hypotheses on the origin of giant viruses from cells, likely of an extinct fourth domain of cellular life, via reductive evolution. However, phylogenomic analyses reveal a different picture, namely multiple origins of giant viruses from smaller NCLDVs via acquisition of multiple genes from the eukaryotic hosts and bacteria, along with gene duplication. Thus, with regard to their origin, the giant viruses do not appear to qualitatively differ from the rest of the virosphere. However, the evolutionary forces that led to the emergence of virus gigantism remain enigmatic.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhen Gong ◽  
Yu Zhang ◽  
Guan-Zhu Han

Abstract Little is known about the infections of double-stranded DNA (dsDNA) viruses in fungi. Here, we use a paleovirological method to systematically identify the footprints of past dsDNA virus infections within the fungal genomes. We uncover two distinct groups of endogenous nucleocytoplasmic large DNA viruses (NCLDVs) in at least seven fungal phyla (accounting for about a third of known fungal phyla), revealing an unprecedented diversity of dsDNA viruses in fungi. Interestingly, one fungal dsDNA virus lineage infecting six fungal phyla is closely related to the giant virus Pithovirus, suggesting giant virus relatives might widely infect fungi. Co-speciation analyses indicate fungal NCLDVs mainly evolved through cross-species transmission. Taken together, our findings provide novel insights into the diversity and evolution of NCLDVs in fungi.


2011 ◽  
Vol 10 (3) ◽  
pp. 445-454 ◽  
Author(s):  
Jane C. Hines ◽  
Dan S. Ray

ABSTRACT The mitochondrial DNA of trypanosomes contains two types of circular DNAs, minicircles and maxicircles. Both minicircles and maxicircles replicate from specific replication origins by unidirectional theta-type intermediates. Initiation of the minicircle leading strand and also that of at least the first Okazaki fragment involve RNA priming. The Trypanosoma brucei genome encodes two mitochondrial DNA primases, PRI1 and PRI2, related to the primases of eukaryotic nucleocytoplasmic large DNA viruses. These primases are members of the archeoeukaryotic primase superfamily, and each of them contain an RNA recognition motif and a PriCT-2 motif. In Leishmania species, PRI2 proteins are approximately 61 to 66 kDa in size, whereas in Trypanosoma species, PRI2 proteins have additional long amino-terminal extensions. RNA interference (RNAi) of T. brucei PRI2 resulted in the loss of kinetoplast DNA and accumulation of covalently closed free minicircles. Recombinant PRI2 lacking this extension (PRI2ΔNT) primes poly(dA) synthesis on a poly(dT) template in an ATP-dependent manner. Mutation of two conserved aspartate residues (PRI2ΔNTCS) resulted in loss of enzymatic activity but not loss of DNA binding. We propose that PRI2 is directly involved in initiating kinetoplast minicircle replication.


2006 ◽  
Vol 80 (10) ◽  
pp. 5059-5064 ◽  
Author(s):  
Friedemann Weber ◽  
Valentina Wagner ◽  
Simon B. Rasmussen ◽  
Rune Hartmann ◽  
Søren R. Paludan

ABSTRACT Double-stranded RNA (dsRNA) longer than 30 bp is a key activator of the innate immune response against viral infections. It is widely assumed that the generation of dsRNA during genome replication is a trait shared by all viruses. However, to our knowledge, no study exists in which the production of dsRNA by different viruses is systematically investigated. Here, we investigated the presence and localization of dsRNA in cells infected with a range of viruses, employing a dsRNA-specific antibody for immunofluorescence analysis. Our data revealed that, as predicted, significant amounts of dsRNA can be detected for viruses with a genome consisting of positive-strand RNA, dsRNA, or DNA. Surprisingly, however, no dsRNA signals were detected for negative-strand RNA viruses. Thus, dsRNA is indeed a general feature of most virus groups, but negative-strand RNA viruses appear to be an exception to that rule.


Sign in / Sign up

Export Citation Format

Share Document