scholarly journals A unique lower X-gate in TASK channels traps inhibitors within the vestibule

2019 ◽  
Author(s):  
Karin E. J. Rödström ◽  
Aytuğ K. Kiper ◽  
Wei Zhang ◽  
Susanne Rinné ◽  
Ashley C. W. Pike ◽  
...  

TASK channels are unusual members of the two-pore domain potassium (K2P) channel family, with unique and unexplained physiological and pharmacological characteristics. TASKs are found in neurons1,2, cardiomyocytes3–5 and vascular smooth muscle cells6 where they are involved in regulation of heart rate7, pulmonary artery tone6,8, sleep/wake cycles9 and responses to volatile anaesthetics9–12. K2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli13,14. Unlike other K2P channels, TASK channels have the capacity to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. These characteristics make the TASK channels some of the the most easily druggable potassium channels, and indeed TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnea (OSA) and atrial fibrillation (Afib)15 (The DOCTOS and SANDMAN Trials). Generally, potassium channels have an intramembrane vestibule with a selectivity filter above and a gate with four parallel helices below. However, K2P channels studied to date all lack a lower gate. Here we present the structure of TASK-1, revealing a unique lower gate created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance, which we designate as an ‟X-gate”. This structure is formed by six residues (V243LRFMT248) that are essential for responses to volatile anaesthetics11, neuro-transmitters16 and G-protein coupled receptors16. Interestingly, mutations within the X-gate and surrounding regions drastically affect both open probability and activation by anaesthetics. Structures of TASK-1 with two novel, high-affinity blockers, shows both inhibitors bound below the selectivity filter, trapped in the vestibule by the X-gate, thus explaining their exceptionally low wash-out rates. Thus, the presence of the X-gate in TASK channels explains many aspects of their unusual physiological and pharmacological behaviour, which is invaluable for future development and optimization of TASK modulators for treatment of heart, lung and sleep disorders.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1489-C1489
Author(s):  
Ashley Pike ◽  
Yin Dong ◽  
Alexandra Mackenzie ◽  
Conor McClenaghan ◽  
Shubhashish Mukhopadhyay ◽  
...  

TREK-1/2 are members of the mechano-gated subfamily of two-pore (K2P) domain potassium channels leaking K+ out of the cell and contributing to the resting membrane potential. In contrast to the classical tetrameric potassium channels, K2P channels are dimeric with an atypical architecture and the structural mechanisms underlying their channel gating are poorly understood. Here we present the crystal structures of human TREK-1 and TREK-2 at resolutions of 2.7 and 3.4Å which provide insights into the basis of intracellular and extracellular gating in this unique family of ion channels. We have solved the structure of TREK-2 in two distinct conformations differing in the orientation of the pore-lining transmembrane helices. The C-terminal M4 helix is hinged at a conserved glycine residue so that it adopts one of two distinct orientations. The M4 helix is either kinked towards the membrane, packing against the M2 inner helix of the adjacent subunit ("M4 up") or straightens and interacts with the M2/M3 helices from the same subunit ("M4 down"). In the M4 down state, a hydrophobic lateral opening runs perpendicular to the ion conductance pathway between M2 and M4 and links the inner vestibule to the membrane-exposed face of the channel. Transition between the "M4 down" and "M4 up" conformations may play a role in channel activation and gating. Cocrystallisation with a TREK-1/2 channel inhibitor promotes the "M4 down" state. The structure of TREK-1 exhibits an "M4-up" conformation but is unusual in that the selectivity filter is significantly distorted with only two correctly-formed potassium sites. The structure also reveals a divalent ion binding site between the extracellular cap and the pore domain loop. The TREK-1 structure illustrates how changes at an extracellular site can affect the pore structure. The structures will be described in detail along with their implications for channel gating in response to intracellular and extracellular stimuli.



2006 ◽  
Vol 34 (5) ◽  
pp. 899-902 ◽  
Author(s):  
M.I. Niemeyer ◽  
F.D. González-Nilo ◽  
L. Zúñiga ◽  
W. González ◽  
L.P. Cid ◽  
...  

Potassium channels have a conserved selectivity filter that is important in determining which ions are conducted and at what rate. Although K+ channels of different conductance characteristics are known, they differ more widely in the way their opening and closing, the gating, is governed. TASK and TALK subfamily proteins are two-pore region KCNK K+ channels gated open by extracellular pH. We discuss the mechanism for this gating in terms of electrostatic effects on the pore changing the occupancy and open probability of the channels in a way reminiscent of C-type inactivation gating at the selectivity filter. Essential to this proposed mechanism is the replacement of two highly conserved aspartate residues at the pore mouth by asparagine or histidine residues in the TALK and TASK channels.



1999 ◽  
Vol 90 (4) ◽  
pp. 1092-1102 ◽  
Author(s):  
Christoph H. Kindler ◽  
Spencer C. Yost ◽  
Andrew T. Gray

Background Recently, a new structural family of potassium channels characterized by two pore domains in tandem within their primary amino acid sequence was identified. These tandem pore domain potassium channels are not gated by voltage and appear to be involved in the control of baseline membrane conductances. The goal of this study was to identify mechanisms of local anesthetic action on these channels. Methods Oocytes of Xenopus laevis were injected with cRNA from five cloned tandem pore domain baseline potassium channels (TASK, TREK-1, TOK1, ORK1, and TWIK-1), and the effects of several local anesthetics on the heterologously expressed channels were assayed using two-electrode voltage-clamp and current-clamp techniques. Results Bupivacaine (1 mM) inhibited all studied tandem pore potassium channels, with TASK inhibited most potently. The potency of inhibition was directly correlated with the octanol: buffer distribution coefficient of the local anesthetic, with the exception of tetracaine, to which TASK is relatively insensitive. The approximate 50% inhibitory concentrations of TASK were 709 microM mepivacaine, 222 microM lidocaine, 51 microM R(+)-ropivacaine, 53 microM S(-)-ropivacaine, 668 microM tetracaine, 41 microM bupivacaine, and 39 microM etidocaine. Local anesthetics (1 mM) significantly depolarized the resting membrane potential of TASK cRNA-injected oocytes compared with saline-injected control oocytes (tetracaine 22+/-6 mV rs. 7+/-1 mV, respectively, and bupivacaine 31+/-7 mV vs. 6+/-4 mV). Conclusions Local anesthetics inhibit tandem pore domain baseline potassium channels, and they could depolarize the resting membrane potential of cells expressing these channels. Whether inhibition of these channels contributes to conduction blockade or to the adverse effects of local anesthetics remains to be determined.



2005 ◽  
Vol 288 (1) ◽  
pp. F162-F169 ◽  
Author(s):  
Michael J. Morton ◽  
Sarah Chipperfield ◽  
Abdulrahman Abohamed ◽  
Asipu Sivaprasadarao ◽  
Malcolm Hunter

TASK-2 is a member of the two-pore domain K+ (K2P) channel family that is expressed at high levels in several epithelia, including the proximal tubule. In common with the other TASK channels, TASK-2 is sensitive to changes in extracellular pH. We have expressed human TASK-2 in Chinese hamster ovary cells and studied whole cell and single-channel activity by patch clamp. The open probability of K2P channels is generally independent of voltage, yielding linear current-voltage ( I- V) curves. Despite these properties, we found that these channels showed distinct inward rectification immediately on the establishment of whole cell clamp, which became progressively less pronounced with time. This rectification was due to intracellular Na+ but was unaffected by polyamines or Mg2+ (agents that cause rectification in Kir channels). Rectification was concentration- and voltage-dependent and could be reversibly induced by switching between Na+-rich and Na+-free bath solutions. In excised inside-out patches, Na+ reduced the amplitude of single-channel currents, indicative of rapid block and unblock of the pore. Mutations in the selectivity filter abolished Na+-induced rectification, suggesting that Na+ binds within the selectivity filter in wild-type channels. This sensitivity to intracellular Na+ may be an additional potential regulatory mechanism of TASK-2 channels.



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yunlu Kang ◽  
Jing-Xiang Wu ◽  
Lei Chen

AbstractResting membrane potential determines the excitability of the cell and is essential for the cellular electrical activities. The NALCN channel mediates sodium leak currents, which positively adjust resting membrane potential towards depolarization. The NALCN channel is involved in several neurological processes and has been implicated in a spectrum of neurodevelopmental diseases. Here, we report the cryo-EM structure of rat NALCN and mouse FAM155A complex to 2.7 Å resolution. The structure reveals detailed interactions between NALCN and the extracellular cysteine-rich domain of FAM155A. We find that the non-canonical architecture of NALCN selectivity filter dictates its sodium selectivity and calcium block, and that the asymmetric arrangement of two functional voltage sensors confers the modulation by membrane potential. Moreover, mutations associated with human diseases map to the domain-domain interfaces or the pore domain of NALCN, intuitively suggesting their pathological mechanisms.



2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
F Wiedmann ◽  
D Schlund ◽  
A Ratte ◽  
H A Katus ◽  
M Kraft ◽  
...  

Abstract Background and purpose Mechanosensitive hTREK-1 (hK2P2.1) two-pore-domain potassium channels give rise to background currents that control resting membrane potential in excitable tissue. Recently TREK-1 currents have been linked to regulation of cardiac rhythm as well as hypertrophy and fibrosis. Even though pharmacological and biophysical characteristics of hTREK-1 channels have been widely studied, less is known about its posttranslational modifications. This study aims to evaluate whether hTREK-1 channels are N-glycosylated and whether glycosylation may affect channel functionality. Experimental approach Following pharmacological inhibition of N glycosylation, enzymatic digestion or mutagenesis, immunoblots of Xenopus laevis oocytes and HEK-233T cell lysates were used to assess electrophoretic mobility. Two-electrode voltage clamp measurements were employed to study channel function. Key results TREK-1 channels subunits undergo N-glycosylation at asparagine residues 110 and 134. The presence of sugar moieties at these two sites increases channel function. Detection of glycosylation-deficient mutant channels in surface fractions and recordings of macroscopic potassium currents mediated by these subunits demonstrate that non-glycosylated hTREK-1 channels subunits are able to reach the cell surface in general, but seemingly with reduced efficiency. Conclusion and implications hTREK-1 are glycoproteins and N glycosylation at positions 110 and 134 is involved in channel surface trafficking. These findings extend our view on regulation of hTREK-1 currents by posttranslational modifications and provide novel insights into how glycosylation deficiency disorders may promote arrhythmogenesis.



2002 ◽  
Vol 120 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Shinghua Ding ◽  
Richard Horn

The permeation pathway in voltage-gated potassium channels has narrow constrictions at both the extracellular and intracellular ends. These constrictions might limit the flux of cations from one side of the membrane to the other. The extracellular constriction is the selectivity filter, whereas the intracellular bundle crossing is proposed to act as the activation gate that opens in response to a depolarization. This four-helix bundle crossing is composed of S6 transmembrane segments, one contributed by each subunit. Here, we explore the cytoplasmic extension of the S6 transmembrane segment of Shaker potassium channels, just downstream from the bundle crossing. We substituted cysteine for each residue from N482 to T489 and determined the amplitudes of single channel currents and maximum open probability (Po,max) at depolarized voltages using nonstationary noise analysis. One mutant, F484C, significantly reduces Po,max, whereas Y483C, F484C, and most notably Y485C, reduce single channel conductance (γ). Mutations of residue Y485 have no effect on the Rb+/K+ selectivity, suggesting a local effect on γ rather than an allosteric effect on the selectivity filter. Y485 mutations also reduce pore block by tetrabutylammonium, apparently by increasing the energy barrier for blocker movement through the open activation gate. Replacing Rb+ ions for K+ ions reduces the amplitude of single channel currents and makes γ insensitive to mutations of Y485. These results suggest that Rb+ ions increase an extracellular energy barrier, presumably at the selectivity filter, thus making it rate limiting for flux of permeant ions. These results indicate that S6T residues have an influence on the conformation of the open activation gate, reflected in both the stability of the open state and the energy barriers it presents to ions.



2014 ◽  
Vol 143 (2) ◽  
pp. 289-307 ◽  
Author(s):  
Line Garneau ◽  
Hélène Klein ◽  
Marie-France Lavoie ◽  
Emmanuelle Brochiero ◽  
Lucie Parent ◽  
...  

The Ca2+-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca2+ concentrations (Pomax) is low, typically 0.1–0.2 for KCa3.1 wild type. This observation argues for the binding of Ca2+ to the calmodulin (CaM)–KCa3.1 complex, promoting the formation of a preopen closed-state configuration leading to channel opening. We have previously shown that the KCa3.1 active gate is most likely located at the level of the selectivity filter. As Ca2+-dependent gating of KCa3.1 originates from the binding of Ca2+ to CaM in the C terminus, the hypothesis of a gate located at the level of the selectivity filter requires that the conformational change initiated in the C terminus be transmitted to the S5 and S6 transmembrane helices, with a resulting effect on the channel pore helix directly connected to the selectivity filter. A study was thus undertaken to determine to what extent the interactions between the channel pore helix with the S5 and S6 transmembrane segments contribute to KCa3.1 gating. Molecular dynamics simulations first revealed that the largest contact area between the pore helix and the S5 plus S6 transmembrane helices involves residue F248 at the C-terminal end of the pore helix. Unitary current recordings next confirmed that modulating aromatic–aromatic interactions between F248 and W216 of the S5 transmembrane helical segment and/or perturbing the interactions between F248 and residues in S6 surrounding the glycine hinge G274 cause important changes in Pomax. This work thus provides the first evidence for a key contribution of the pore helix in setting Pomax by stabilizing the channel closed configuration through aromatic–aromatic interactions involving F248 of the pore helix. We propose that the interface pore helix/S5 constitutes a promising site for designing KCa3.1 potentiators.



2007 ◽  
Vol 19 (1) ◽  
pp. 251
Author(s):  
C. G. Hur ◽  
D. Kang ◽  
J. Y. Park ◽  
S. G. Hong ◽  
J. Han

Tandem-pore domain K+ (K2P) channels that contribute to setting the resting membrane potential of excitable and nonexcitable cells are expressed in many kinds of cells and tissues. Recent studies have shown that TASK [TWIK (Tandem of P domains in Weak Inward rectifying K+ channels)-related acid-sensitive K+ channels] and TREK (TWIK-Related K+ channels), members of K2P channel family that are involved in a variety of cellular functions, are expressed in human myometrium, placenta, and cytotrophoblast cells. However, their expression in bovine oocytes and embryos has not yet been reported. In this study, we examined whether TASK and TREK channels are expressed in bovine immature (germinal vesicle-stage) and mature (metaphase II-stage) oocytes and in pre-implantation (2-cell- and 16-cell-stage) embryos using RT-PCR and immunocytochemistry. RT-PCR data showed that TASK-1, TASK-3, TREK-1, TREK-2, and TRAAK channels were expressed in bovine immature and mature oocytes. Interestingly, the expression levels of TREK channels were 2-fold higher than those of TASK channels as judged by semiquantitative RT-PCR and real-time PCR with cDNA synthesized from 50 individual immature and mature oocytes (P < 0.05, n = 4). Intensity of genes was normalized with respect to that of GAPDH. Consistent with RT-PCR data, immunocytochemical data showed that TASK-1, TASK-3, TREK-1, TREK-2, and TRAAK channels were expressed in bovine immature and mature oocytes. The fluorescence intensity of TREK channels was higher than that of TASK channels (P < 0.05, n = 5). TASK and TREK channels were also expressed in pre-implantation embryos. Of TREK channels, the TREK-2 channel was strongly expressed in immature and mature oocytes and in pre-implantation embryos (P < 0.05, n = 5). For statistics, Student's t-test was used, with P < 0.05 as the criterion for significance. Our results show that TASK-1, TASK-3, TREK-1, TREK-2, and TRAAK channels were expressed in bovine immature and mature oocytes and pre-implantation embryos. These results suggest that TASK and TREK channels could be involved in various physiological processes in mammalian oocytes and embryos.



2020 ◽  
Vol 21 (2) ◽  
pp. 532 ◽  
Author(s):  
Daniel Bustos ◽  
Mauricio Bedoya ◽  
David Ramírez ◽  
Guierdy Concha ◽  
Leandro Zúñiga ◽  
...  

Two-pore domain potassium (K2P) channels maintain the cell’s background conductance by stabilizing the resting membrane potential. They assemble as dimers possessing four transmembrane helices in each subunit. K2P channels were crystallized in “up” and “down” states. The movements of the pore-lining transmembrane TM4 helix produce the aperture or closure of side fenestrations that connect the lipid membrane with the central cavity. When the TM4 helix is in the up-state, the fenestrations are closed, while they are open in the down-state. It is thought that the fenestration states are related to the activity of K2P channels and the opening of the channels preferentially occurs from the up-state. TASK-2, a member of the TALK subfamily of K2P channels, is opened by intracellular alkalization leading the deprotonation of the K245 residue at the end of the TM4 helix. This charge neutralization of K245 could be sensitive or coupled to the fenestration state. Here, we describe the relationship between the states of the intramembrane fenestrations and K245 residue in TASK-2 channel. By using molecular modeling and simulations, we show that the protonated state of K245 (K245+) favors the open fenestration state and, symmetrically, that the open fenestration state favors the protonated state of the lysine residue. We show that the channel can be completely blocked by Prozac, which is known to induce fenestration opening in TREK-2. K245 protonation and fenestration aperture have an additive effect on the conductance of the channel. The opening of the fenestrations with K245+ increases the entrance of lipids into the selectivity filter, blocking the channel. At the same time, the protonation of K245 introduces electrostatic potential energy barriers to ion entrance. We computed the free energy profiles of ion penetration into the channel in different fenestration and K245 protonation states, to show that the effects of the two transformations are summed up, leading to maximum channel blocking. Estimated rates of ion transport are in qualitative agreement with experimental results and support the hypothesis that the most important barrier for ion transport under K245+ and open fenestration conditions is the entrance of the ions into the channel.



Sign in / Sign up

Export Citation Format

Share Document