type ii fluid
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1400
Author(s):  
Byron P. Brassel ◽  
Sunil D. Maharaj ◽  
Rituparno Goswami

We consider the energy conditions for a dissipative matter distribution. The conditions can be expressed as a system of equations for the matter variables. The energy conditions are then generalised for a composite matter distribution; a combination of viscous barotropic fluid, null dust and a null string fluid is also found in a spherically symmetric spacetime. This new system of equations comprises the energy conditions that are satisfied by a Type I fluid. The energy conditions for a Type II fluid are also presented, which are reducible to the Type I fluid only for a particular function. This treatment will assist in studying the complexity of composite relativistic fluids in particular self-gravitating systems.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Byron P Brassel ◽  
Sunil D Maharaj ◽  
Rituparno Goswami

Abstract The energy conditions are studied, in the relativistic astrophysical setting, for higher-dimensional Hawking–Ellis Type I and Type II matter fields. The null, weak, dominant and strong energy conditions are investigated for a higher-dimensional inhomogeneous, composite fluid distribution consisting of anisotropy, shear stresses, non-vanishing viscosity as well as a null dust and null string energy density. These conditions are expressed as a system of six equations in the matter variables where the presence of the higher dimension $N$ is explicit. The form and structure of the energy conditions is influenced by the geometry of the $(N-2)$-sphere. The energy conditions for the higher-dimensional Type II fluid are also generated, and it is shown that under certain restrictions the conditions for a Type I fluid are regained. All previous treatments for four dimensions are contained in our work.


2002 ◽  
Vol 11 (01) ◽  
pp. 113-124 ◽  
Author(s):  
JAIME F. VILLAS Da ROCHA

A large class of Type II fluid solutions to Einstein field equations in N-dimensional spherical spacetimes is found, wich includes most of the known solutions. A family of the generalized collapsing Vaidya solutions with homothetic self-similarity, parametrized by a constant λ, is studied, and found that when λ>λ c (N), the collapse always forms black holes, and when λ<λ c (N), it always forms naked singularities, where λ c (N) is function of the spacetime dimension N only.


Sign in / Sign up

Export Citation Format

Share Document