symmetry break
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Saran Lamichhane ◽  
Nurapati Pantha ◽  
Bipin Khatry ◽  
Prakash Parajuli ◽  
Narayan Prasad Adhikari

The geometries, structural stability, electrical and magnetic characteristics of pure and multiple palladium (Pd)-adsorbed graphene, followed by hydrogen adsorption, are investigated using first-principles calculations with the density functional theory. In the DFT-D2 technique, first-principles computations with the van der Waals interaction are done using the generalized gradient approximation. In a [Formula: see text] supercell, the adsorption energy per Pd atom is found to be 1.20 eV in the optimal adsorption shape. The bandgap of 51 meV has opened in multiple Pd-decorated graphene, according to band calculations. This band’s opening is ascribed to a symmetry break. The binding energy for hydrogen adsorption in optimal double Pd-decorated graphene was determined to be in the range of (0.14–0.73) eV per hydrogen molecule, indicating that Pd-decorated graphene might be used as a hydrogen storage material.


2021 ◽  
Vol 4 (2) ◽  
pp. 1-24
Author(s):  
Giulia Bevilacqua ◽  
Keyword(s):  

2020 ◽  
Author(s):  
Sebastian Theiss ◽  
Michael Voggel ◽  
Henning Kuper ◽  
Martin Hoermann ◽  
Ulrich Krings ◽  
...  

The central promise of nanoparticle-based materials is that cooperative properties may emerge, when individual quantum dots are positioned on a periodic lattice. Yet, there are only few papers in literature reporting about such effects. Nevertheless, it is clear that the symmetry of the superlattice is decisive for the desired emergent phenomena. An interesting question is, how the symmetry of the initial monodisperse nanoparticles affects the structure of the colloidal crystal during self-assembly processes. For instance, particles with hexagonal cross-section show self-organization which is very similar to spherical colloids. Like-wise one would also expect that trigonal nanoparticles behave similar. Unfortunately, it is very hard to obtain monodisperse semiconductur colloids with trigonal shape, because this requires a symmetry break during morphogenesis of the nanocrystal. While such a symmetry-break is known in literature for structures attached to a solid substrate, it is shown here, colloidal synthesis of trigonal ZnO nanorods is successful, and the mechanism is elucidated by experimental and theoretical methods. 2D-superlattices formed by such particles with trigonal cross-section were compared to hexagonal analogues. It was found, there are distinct differences, which result in important differences in properties such as the formation of voids and also in optical properties.


2020 ◽  
Author(s):  
Sebastian Theiss ◽  
Michael Voggel ◽  
Henning Kuper ◽  
Martin Hoermann ◽  
Ulrich Krings ◽  
...  

The central promise of nanoparticle-based materials is that cooperative properties may emerge, when individual quantum dots are positioned on a periodic lattice. Yet, there are only few papers in literature reporting about such effects. Nevertheless, it is clear that the symmetry of the superlattice is decisive for the desired emergent phenomena. An interesting question is, how the symmetry of the initial monodisperse nanoparticles affects the structure of the colloidal crystal during self-assembly processes. For instance, particles with hexagonal cross-section show self-organization which is very similar to spherical colloids. Like-wise one would also expect that trigonal nanoparticles behave similar. Unfortunately, it is very hard to obtain monodisperse semiconductur colloids with trigonal shape, because this requires a symmetry break during morphogenesis of the nanocrystal. While such a symmetry-break is known in literature for structures attached to a solid substrate, it is shown here, colloidal synthesis of trigonal ZnO nanorods is successful, and the mechanism is elucidated by experimental and theoretical methods. 2D-superlattices formed by such particles with trigonal cross-section were compared to hexagonal analogues. It was found, there are distinct differences, which result in important differences in properties such as the formation of voids and also in optical properties.


Author(s):  
E. Roza

It is shown that the relationship between gravity and quantum physics can be described in terms of the symmetry break of space due to elementary constituents, dubbed as “darks”, which constitute a universal energetic background field that extends from the cosmological level down to the nuclear level. It requires (a) the awareness of the polarisable second elementary dipole moment of a recently discovered third Dirac particle type, next to the electron-type and the Majorana-type, and (b) the awareness that Einstein’s Lambda is not a constant of nature, but, instead, a covariant integration constant with a value that depends on the scope of the cosmological system under consideration, such as solar systems and galaxies, eventually showing up as the Cosmological Constant at the level of the universe. The relationship has been made explicit by relating two major gravitational constants quantaties (the gravitational constant and Milgrom’s acceleration constant) with a single nuclear quantity (the rest mass of the pion derived from the Higgs boson value).


Author(s):  
Engel Roza

It is shown that the relationship between gravity and quantum physics can be described in terms of the symmetry break of space due to elementary constituents, dubbed as “darks”, which constitute a universal energetic background field that extends from the cosmological level down to the nuclear level. It requires (a) the awareness of the polarisable second elementary dipole moment of a recently discovered third Dirac particle type, next to the electron-type and the Majorana-type, and (b) the awareness that Einstein’s Lambda is not a constant of nature, but, instead, a covariant integration constant with a value that depends on the scope of the cosmological system under consideration, such as solar systems and galaxies, eventually showing up as the Cosmological Constant at the level of the universe. The relationship has been made explicit by relating the two major gravitational constants of nature (the gravitational constant and Milgrom’s acceleration constant) with the two major nuclear constants of nature (the weak interaction boson and the Higgs boson).


Author(s):  
Aayush Verma

This note will be brief attention to an unknown current in SM4 Field based on disintegrating the Lagrangian of quarks in SM4 into four parts. It is shown that the current breaks while interacting with the quarks and makes the quarks to not interact with fourth-generation quarks. This note also shows that gauge bosons are produced while these currents symmetry break and provides the service as mediators.


2017 ◽  
Vol 29 (12) ◽  
pp. 5384-5393 ◽  
Author(s):  
Samrat Das Adhikari ◽  
Anirban Dutta ◽  
Gyanaranjan Prusty ◽  
Puspanjali Sahu ◽  
Narayan Pradhan

Sign in / Sign up

Export Citation Format

Share Document