An Evaluation of the Timing Accuracy of Global and Regional Seismic Stations and Networks

Author(s):  
Yi Yang ◽  
Xiaodong Song ◽  
Adam T. Ringler

Abstract Clock accuracy is a basic parameter of any seismic station and has become increasingly important for seismology as the community seeks to refine structures and dynamic processes of the Earth. In this study, we measure the arrival time differences of moderate repeating earthquakes with magnitude 5.0–5.9 in the time range of 1991–2017 at the same seismic stations by cross-correlating their highly similar waveforms and thereby identify potential timing errors from the outliers of the measurements. The method has very high precision of about 10 ms and shows great potential to be used for routine inspection of the timing accuracy of historical and future digital seismic data. Here, we report 5131 probable cases of timing errors from 451 global and regional stations available from the Incorporated Research Institutions for Seismology Data Management Center, ranging from several tens of milliseconds to over 10 s. Clock accuracy seems to be a prevailing problem in permanent stations with long-running histories. Although most of the timing errors have already been tagged with low timing quality, there are quite a few exceptions, which call for greater attention from network operators and the seismological community. In addition, seismic studies, especially those on temporal changes of the Earth’s media from absolute arrival times, should be careful to avoid misinterpreting timing errors as temporal changes, which is indeed a problem in some previous studies of the Earth’s inner core boundary.

2021 ◽  
Author(s):  
Olga Usoltseva ◽  
Vladimir Ovtchinnikov

<p><span>Study of the contact zone between the inner and outer core represents considerable interest for understanding of properties, structures and dynamic of the Earth's core. One of </span><span>the </span><span>sources of </span><span>the </span><span>data about the processes proceeding in the top part of the inner core is the seismic wave PKIIKP once reflected from an undersize inner core boundary. Amplitudes of these waves are sensitive to the shear velocity in the top part of the inner core and are small. Therefore their identification at a single seismic station is not reliable without application of additional methods of analysis. </span><span>Significant in this regard is the discussion about the source (in inner core or in mantle) of anomalous arrivals<!-- Это можно удалить --> detected at the TAM station in North Africa [1,2] in the time range of PKIIKP phase.</span></p><p><span>To estimate influence of model parameters (S and P seismic velocity) on the characteristics of PKIIKP wave (amplitude and travel time) we calculated sensitivity kernels for upper mantle and inner core for dominant period 1.2 s, azimuth step 0.2 degrees and radius step 20 km by using DSM Kernel Suite algorithm. It was revealed that PKIIKP amplitude is more sensitivities to mantle heterogeneities than to inner core ones. </span><span>For reducing the effects of the overlying structures we suppose to use </span>а <span>joint analysis PKIIKP and pPKIIKP waves. </span><span>With this approach, an incorrect i</span><span>dentification</span><span> of the PKIIKP wave is most likely excluded. </span><span>We<!-- Было бы хорошо привести пример --> demonstrate the effectiveness of the approach on the example of processing the seismogram of the 11.02.2015 earthquake re</span>с<span>o</span><span>rded at the GZH station in China at a distance of 179.4 degrees.</span></p><p><span>1. Wang W., Song X. Analyses of anomalous amplitudes of antipodal PKIIKP waves</span><span>,</span><span> E<!-- Удаляется вместе с текстом, выделенным выше Зеленым цветом. -->aPP. 2019. V. 3. P. 212-217. doi: 10.26464/epp2019023</span></p><p><span>2. Tsuboi S., Butler R. Inner core differential rotation inferred from antipodal seismic observations</span><span>,</span><span> PEPI</span><span>,</span><span> 2020. V.301. 106451. </span></p>


Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 202-205
Author(s):  
Richard G. Kraus ◽  
Russell J. Hemley ◽  
Suzanne J. Ali ◽  
Jonathan L. Belof ◽  
Lorin X. Benedict ◽  
...  

Terapascal iron-melting temperature The pressure and temperature conditions at which iron melts are important for terrestrial planets because they determine the size of the liquid metal core, an important factor for understanding the potential for generating a radiation-shielding magnetic field. Kraus et al . used laser-driven shock to determine the iron-melt curve up to a pressure of 1000 gigapascals (see the Perspective by Zhang and Lin). This value is about three times that of the Earth’s inner core boundary. The authors found that the liquid metal core lasted the longest for Earth-like planets four to six times larger in mass than the Earth. —BG


2017 ◽  
Vol 88 (6) ◽  
pp. 1472-1479 ◽  
Author(s):  
Ellen M. Syracuse ◽  
W. Scott Phillips ◽  
Monica Maceira ◽  
Michael L. Begnaud

1997 ◽  
Vol 40 (5) ◽  
Author(s):  
G. Patanè ◽  
C. Centamore ◽  
S. La Delfa

This paper analyses twelve etnean earthquakes which occurred at various depths and recorded at least by eleven stations. The seismic stations span a wide part of the volcanic edifice; therefore each set of direct P-wave arrival times at these stations can be considered appropriate for tracing isochronal curves. Using this simple methodology and the results obtained by previous studies the authors make a reconstruction of the geometry of the bodies inside the crust beneath Mt. Etna. These bodies are interpreted as a set of cooled magmatic masses, delimited by low-velocity discontinuities which can be considered, at present, the major feeding systems of the volcano.


Sign in / Sign up

Export Citation Format

Share Document