multispectral method
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 1)

Istoriya ◽  
2021 ◽  
Vol 12 (5 (103)) ◽  
pp. 0
Author(s):  
Elena Ukhanova

The article is devoted to the unknown prayer to St. John Damascene preserved on the margins of the oldest Russian 12th century copy of the “Theology” by this Orthodox thinker. Its text is badly damaged and almost not readable. It has been visualized by the multispectral method with subsequent digital processing and published in this work. The text of the prayer was written in a unique type of ligature writing, which has only survived in one more codex. On the basis of codicological, paleographic and historical data, both texts have been dated to the last third of the 14th century and localized in Moscow. The article puts forward a hypothesis about the connection of the unusual ligature writing with the metropolitan scriptorium at the Moscow Chudov Monastery where there were Greek manuscripts at that time and new translations of liturgical texts were underway. Its appearance was probably due to the need of creating a new book letter design instead of the “ustav” (majuscule) in order to speed up the scribe’s work and save parchment. The original solution was inspired by the Greek ligature script and minuscule. However, this artificial style of writing did not spread out; the “ustav” was soon replaced by the “poluustav” letter form.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ting Zhao ◽  
Zihui Liu ◽  
Jingmei Niu ◽  
Baoxing Lv ◽  
Yuliang Xiao ◽  
...  

Salbutamol (SBAL), a kind of short-acting beta 2-adrenergic agonist, has been mainly used to treat bronchial asthma and other allergic airway diseases clinically. In this study, the interaction mechanism between salbutamol and human serum albumin was researched by the multispectral method and molecular docking. The fluorescence intensity of HSA could be regularly enhanced with the increase of SBAL concentration. Both the results of the multispectral method and molecular docking showed that SBAL could bind HSA with van der Waals force and hydrogen bonds. The binding mechanism was further analysed by UV-Vis and synchronous fluorescence spectra. The contents of the secondary structure of free HSA and SBAL-HSA complex were evaluated using CD spectra.


Optik ◽  
2019 ◽  
Vol 195 ◽  
pp. 162861
Author(s):  
Hongkun Chen ◽  
Yujia Zhang ◽  
Hanbing Qi ◽  
Dong Li

2017 ◽  
Vol 22 (4) ◽  
pp. 046003
Author(s):  
Maomao Chen ◽  
Yuan Zhou ◽  
Han Su ◽  
Dong Zhang ◽  
Jianwen Luo

2017 ◽  
Vol 10 (4) ◽  
pp. 1281-1298 ◽  
Author(s):  
Lorenzo Costantino ◽  
Juan Cuesta ◽  
Emanuele Emili ◽  
Adriana Coman ◽  
Gilles Foret ◽  
...  

Abstract. Present and future satellite observations offer great potential for monitoring air quality on a daily and global basis. However, measurements from currently orbiting satellites do not allow a single sensor to accurately probe surface concentrations of gaseous pollutants such as tropospheric ozone. Combining information from IASI (Infrared Atmospheric Sounding Interferometer) and GOME-2 (Global Ozone Monitoring Experiment-2) respectively in the TIR and UV spectra, a recent multispectral method (referred to as IASI+GOME-2) has shown enhanced sensitivity for probing ozone in the lowermost troposphere (LMT, below 3 km altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 alone only peaks at 3 to 4 km at the lowest.In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG (EUMETSAT Polar System – Second Generation) satellite observations, from new-generation sensors IASI-NG (Infrared Atmospheric Sounding Interferometer – New Generation) and UVNS (Ultraviolet Visible Near-infrared Shortwave-infrared), to observe near-surface O3 through the IASI-NG+UVNS multispectral method. The pseudo-real state of the atmosphere is provided by the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. We perform full and accurate forward and inverse radiative transfer calculations for a period of 4 days (8–11 July 2010) over Europe.In the LMT, there is a remarkable agreement in the geographical distribution of O3 partial columns between IASI-NG+UVNS pseudo-observations and the corresponding MOCAGE pseudo-reality. With respect to synthetic IASI+GOME-2 products, IASI-NG+UVNS shows a higher correlation between pseudo-observations and pseudo-reality, which is enhanced by about 12 %. The bias on high ozone retrieval is reduced and the average accuracy increases by 22 %. The sensitivity to LMT ozone is also enhanced. On average, the degree of freedom for signal is higher by 159 % over land (from 0.29 to 0.75) and 214 % over ocean (from 0.21 to 0.66). The mean height of maximum sensitivity for the LMT peaks at 1.43 km over land and 2.02 km over ocean, respectively 1.03 and 1.30 km below that of IASI+GOME-2. IASI-NG+UVNS also shows good retrieval skill in the surface–2 km altitude range. It is one of a kind for retrieving ozone layers of 2–3 km thickness, in the first 2–3 km of the atmosphere. IASI-NG+UVNS is expected to largely enhance the capacity to observe ozone pollution from space.


2016 ◽  
Author(s):  
Lorenzo Costantino ◽  
Juan Cuesta ◽  
Emanuele Emili ◽  
Adriana Coman ◽  
Gilles Foret ◽  
...  

Abstract. Present and future satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit satellites do not allow using a single sensor to probe accurately surface concentrations of gaseous pollutants such as tropospheric ozone (Liu et al., 2010). Using single-band approaches based on spaceborne measurements of either thermal infrared radiance (TIR, Eremenko et al., 2008) or ultraviolet reflectance (UV, Liu et al., 2010) only ozone down to the lower troposphere (3 km) may be observed. A recent multispectral method (referred to as IASI+GOME-2) combining the information of IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the TIR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere (LMT, below 3 km of altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 only peaks at 3 to 4 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years, such as EPS-SG, carrying new-generation sensors of IASI and GOME-2 (respectively IASI-NG and UVNS) that will enhance the capacity to observe ozone pollution and particularly by synergism of TIR and UV measurements. In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG satellite observations through IASI-NG+UVNS multispectral method to observer near-surface O3. The pseudo-real state of atmosphere (nature run) is provided by the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. Simulations are calibrated by careful comparisons with real data, to ensure the best consistency between pseudo-reality and reality, as well as between the pseudo-observation simulator and existing satellite products. We perform full and accurate forward and inverse radiative transfer calculations for a period of 4 days (8–11 July 2010) over Europe. In the LMT, there is a remarkable agreement in the geographical distribution of O3 partial columns, calculated between the surface and 3 km of altitude, between IASI-NG+UVNS pseudo-observations and the corresponding MOCAGE pseudo-reality. With respect to synthetic IASI+GOME-2 products, IASI-NG+UVNS shows a higher correlation between pseudo-observations and pseudo-reality, enhanced by about 11 %. The bias on high ozone retrieval is reduced and the average accuracy increases by 22 %. The sensitivity to LMT ozone is enhanced on average with 154 % (from 0.29 to 0.75, over land) and 208 % (from 0.21 to 0.66, over ocean) higher degrees of freedom. The mean height of maximum sensitivity for the LMT peaks at 1.43 km over land and 2.02 km over ocean, respectively 1.03 km and 1.30 km below that of IASI+GOME-2. IASI-NG+UVNS shows also good retrieval skill in the surface-2 km altitude range with a mean DOF (degree of freedom) of 0.52 (land) and 0.42 (ocean), and an average Hmax (altitude of maximum sensitivity) of 1.29 km (land) and 1.96 km (ocean). Unique of its kind for retrieving ozone layers of 2–3 km thickness, in the first 2–3 km of the atmosphere, IASI-NG+UVNS is expected to largely enhance the capacity to observe ozone pollution from space.


Sign in / Sign up

Export Citation Format

Share Document