gene duplication and loss
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 3)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2724
Author(s):  
Yulia V. Mikhaylova ◽  
Roman K. Puzanskiy ◽  
Maria F. Shishova

14-3-3 proteins are key regulatory factors in plants and are involved in a broad range of physiological processes. We addressed the evolutionary history of 14-3-3s from 46 angiosperm species, including basal angiosperm Amborella and major lineage of monocotyledons and eudicotyledons. Orthologs of Arabidopsis isoforms were detected. There were several rounds of duplication events in the evolutionary history of the 14-3-3 protein family in plants. At least four subfamilies (iota, epsilon, kappa, and psi) formed as a result of ancient duplication in a common ancestor of angiosperm plants. Recent duplication events followed by gene loss in plant lineage, among others Brassicaceae, Fabaceae, and Poaceae, further shaped the high diversity of 14-3-3 isoforms in plants. Coexpression data showed that 14-3-3 proteins formed different functional groups in different species. In some species, evolutionarily related groups of 14-3-3 proteins had coexpressed together under certain physiological conditions, whereas in other species, closely related isoforms expressed in the opposite manner. A possible explanation is that gene duplication and loss is accompanied by functional plasticity of 14-3-3 proteins.


Author(s):  
James Willson ◽  
Mrinmoy Saha Roddur ◽  
Baqiao Liu ◽  
Paul Zaharias ◽  
Tandy Warnow

Abstract Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.]


Author(s):  
Daiqing Yin ◽  
RuRu Zhou ◽  
Mengxin Yin ◽  
Yue Chen ◽  
Shixia Xu ◽  
...  

Abstract Arylalkylamine N-acetyltransferase (AANAT) plays a crucial role in synchronizing internal biological functions to circadian and circannual changes. Generally speaking, only one copy of AANAT gene has been found in mammals, however, three independent duplications of this gene were detected in several cetartiodactyl lineages (i.e., Suidae, Hippopotamidae, and Pecora) that originated in the middle Eocene, a geological period characterized with the increased climate seasonality. Lineage-specific expansions of AANAT and the associated functional enhancement in these lineages strongly suggest an improvement in regulating photoperiodic response to adapt to seasonal climate changes. In contrast, independent inactivating mutations or deletions of the AANAT locus were identified in the four pineal-deficient clades (cetaceans, sirenians, xenarthrans, and pangolins). Loss of AANAT function in cetaceans and sirenians could disrupt the sleep-promoting effects of pineal melatonin, which might contribute to increasing wakefulness, adapting these clades to underwater sleep. The absence of AANAT and pineal glands in xenarthrans and pangolins may be associated with their body temperature maintenance. The present work demonstrates a far more complex and intriguing evolutionary pattern and functional diversity of mammalian AANAT genes than previously thought, and provides further evidence for understanding AANAT evolution as driven by rhythmic adaptations in mammals.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 530
Author(s):  
Lixia Sheng ◽  
Cong Ma ◽  
Yue Chen ◽  
Hongsheng Gao ◽  
Jianwen Wang

Fragaria × ananassa Duch, which among the youngest fruit crops, comprises many popular cultivars that are famous for their favored color and aroma. The regulation roles of AP2/ERF (APETALA2/ethylene-responsive element-binding factor) transcription factors in fruit flavor and color regulation have been studied in several fruit crops. The AP2 family of strawberry, which was ignored in recent AP2/ERF identification studies, was explored in this study. A total of 64 FaAP2 (Fragaria × ananassa AP2) transcription factors belonging to the euAP2, euANT (AINTEGUMENTA), and baselANT groups were identified with canonical insertion motifs in two AP2 domains. The motif identification illustrated that motifs 1, 5, and 2 indicated a corresponding AP2 domain repeat 1 with a linker region, and motifs 6, 4, 3 indicated a corresponding AP2 domain repeat 2, all of which were highly conserved. By synteny analysis, FaAP2 paralogs were identified in each sub-genome, and FaAP2 gene duplication and loss explained the unequal AP2 loci of sub-genomes. The expression profile in three cultivars indicated that six FaAP2 paralogs—four WRI (WRINKLED) gene homologs and two AP2 gene homologs—were candidate regulators of red fruit color and/or special fruit aroma. All these finds provide a basis for further investigations into role of AP2 in fruit color and aroma and would be helpful in the targeted selection of strawberry fruit quality to improve breeding.


2021 ◽  
Author(s):  
James Willson ◽  
Mrinmoy Saha Roddur ◽  
Tandy Warnow

AbstractSpecies tree inference from gene trees is an important part of biological research. One confounding factor in estimating species trees is gene duplication and loss which can lead to gene trees with multiple copies of the same gene. In recent years there have been several new methods developed to address this problem that have substantially improved on earlier methods; however, the best performing methods (ASTRAL-Pro, ASTRID-multi, and FastMulRFS) have not yet been directly compared. In this study, we compare ASTRAL-Pro, ASTRID-multi, and FastMulRFS under a wide variety of conditions. Our study shows that while all three have very good accuracy, nearly the same under many conditions, ASTRAL-Pro and ASTRID-multi are more reliably accurate than FastMuLRFS, and that ASTRID-multi is often faster than ASTRAL-Pro. The datasets generated for this study are freely available in the Illinois Data Bank at https://databank.illinois.edu/datasets/IDB-2418574


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul O. Sheridan ◽  
◽  
Sebastien Raguideau ◽  
Christopher Quince ◽  
Jennifer Holden ◽  
...  

Abstract Ammonia-oxidising archaea of the phylum Thaumarchaeota are important organisms in the nitrogen cycle, but the mechanisms driving their radiation into diverse ecosystems remain underexplored. Here, existing thaumarchaeotal genomes are complemented with 12 genomes belonging to the previously under-sampled Nitrososphaerales to investigate the impact of lateral gene transfer (LGT), gene duplication and loss across thaumarchaeotal evolution. We reveal a major role for gene duplication in driving genome expansion subsequent to early LGT. In particular, two large LGT events are identified into Nitrososphaerales and the fate of these gene families is highly lineage-specific, being lost in some descendant lineages, but undergoing extensive duplication in others, suggesting niche-specific roles. Notably, some genes involved in carbohydrate transport or coenzyme metabolism were duplicated, likely facilitating niche specialisation in soils and sediments. Overall, our results suggest that LGT followed by gene duplication drives Nitrososphaerales evolution, highlighting a previously under-appreciated mechanism of genome expansion in archaea.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i57-i65 ◽  
Author(s):  
Erin K Molloy ◽  
Tandy Warnow

Abstract Motivation Species tree estimation is a basic part of biological research but can be challenging because of gene duplication and loss (GDL), which results in genes that can appear more than once in a given genome. All common approaches in phylogenomic studies either reduce available data or are error-prone, and thus, scalable methods that do not discard data and have high accuracy on large heterogeneous datasets are needed. Results We present FastMulRFS, a polynomial-time method for estimating species trees without knowledge of orthology. We prove that FastMulRFS is statistically consistent under a generic model of GDL when adversarial GDL does not occur. Our extensive simulation study shows that FastMulRFS matches the accuracy of MulRF (which tries to solve the same optimization problem) and has better accuracy than prior methods, including ASTRAL-multi (the only method to date that has been proven statistically consistent under GDL), while being much faster than both methods. Availability and impementation FastMulRFS is available on Github (https://github.com/ekmolloy/fastmulrfs). Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 37 (10) ◽  
pp. 2966-2982 ◽  
Author(s):  
Madeleine E Aase-Remedios ◽  
Clara Coll-Lladó ◽  
David E K Ferrier

Abstract The evolutionary transition from invertebrates to vertebrates involved extensive gene duplication, but understanding precisely how such duplications contributed to this transition requires more detailed knowledge of specific cases of genes and gene families. Myogenic differentiation (MyoD) has long been recognized as a master developmental control gene and member of the MyoD family of bHLH transcription factors (myogenic regulatory factors [MRFs]) that drive myogenesis across the bilaterians. Phylogenetic reconstructions within this gene family are complicated by multiple instances of gene duplication and loss in several lineages. Following two rounds of whole-genome duplication (2R WGD) at the origin of the vertebrates, the ancestral function of MRFs is thought to have become partitioned among the daughter genes, so that MyoD and Myf5 act early in myogenic determination, whereas Myog and Myf6 are expressed later, in differentiating myoblasts. Comparing chordate MRFs, we find an independent expansion of MRFs in the invertebrate chordate amphioxus, with evidence for a parallel instance of subfunctionalization relative to that of vertebrates. Conserved synteny between chordate MRF loci supports the 2R WGD events as a major force in shaping the evolution of vertebrate MRFs. We also resolve vertebrate MRF complements and organization, finding a new type of vertebrate MRF gene in the process, which allowed us to infer an ancestral two-gene state in the vertebrates corresponding to the early- and late-acting types of MRFs. This necessitates a revision of previous conclusions about the simple one-to-four origin of vertebrate MRFs.


Sign in / Sign up

Export Citation Format

Share Document