scholarly journals Common α-Fuzzy Fixed Point Results for F-Contractions with Applications

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 277
Author(s):  
Jamshaid Ahmad ◽  
Giuseppe Marino ◽  
Saleh Abdullah Al-Mezel

F-contractions have inspired a branch of metric fixed point theory committed to the generalization of the classical Banach contraction principle. The study of these contractions and α-fuzzy mappings in b-metric spaces was attempted timidly and was not successful. In this article, the main objective is to obtain common α-fuzzy fixed point results for F-contractions in b-metric spaces. Some multivalued fixed point results in the literature are derived as consequences of our main results. We also provide a non-trivial example to show the validity of our results. As applications, we investigate the solution for fuzzy initial value problems in the context of a generalized Hukuhara derivative. Our results generalize, improve and complement several developments from the existing literature.

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 488
Author(s):  
Pravin Baradol ◽  
Jelena Vujaković ◽  
Dhananjay Gopal ◽  
Stojan Radenović

In this paper, we provide an approach to establish the Banach contraction principle ( for the case λ ∈ [ 0 , 1 ) ) , Edelstein, Reich, and Meir–Keeler type contractions in the context of graphical rectangular b-metric space. The obtained results not only enrich and improve recent fixed point theorems of this new metric spaces but also provide positive answers to the questions raised by Mudasir Younis et al. (J. Fixed Point Theory Appl., doi:10.1007/s11784-019-0673-3, 2019).


Author(s):  
Jarosław Górnicki

AbstractRan and Reurings (Proc Am Math Soc 132(5):1435–1443, 2003) extended the Banach contraction principle to the setting of partially ordered metric spaces and recently Proinov (J Fixed Point Theory Appl 22:21, 2020) extended and unified many earlier fixed point theorems. In this paper we will present analogous results for the significantly wider class of mappings on preordered metric spaces. We give non-trivial examples of Kannan-type mappings.


Filomat ◽  
2013 ◽  
Vol 27 (7) ◽  
pp. 1259-1268 ◽  
Author(s):  
Margherita Sgroi ◽  
Calogero Vetro

Wardowski [Fixed Point Theory Appl., 2012:94] introduced a new concept of contraction and proved a fixed point theorem which generalizes Banach contraction principle. Following this direction of research, we will present some fixed point results for closed multi-valued F-contractions or multi-valued mappings which satisfy an F-contractive condition of Hardy-Rogers-type, in the setting of complete metric spaces or complete ordered metric spaces. An example and two applications, for the solution of certain functional and integral equations, are given to illustrate the usability of the obtained results.


Axioms ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 84 ◽  
Author(s):  
Vahid Parvaneh ◽  
Nawab Hussain ◽  
Aiman Mukheimer ◽  
Hassen Aydi

In [Fixed Point Theory Appl., 2015 (2015):185], the authors introduced a new concept of modified contractive mappings, generalizing Ćirić, Chatterjea, Kannan, and Reich type contractions. They applied the condition ( θ 4 ) (see page 3, Section 2 of the above paper). Later, in [Fixed Point Theory Appl., 2016 (2016):62], Jiang et al. claimed that the results in [Fixed Point Theory Appl., 2015 (2015):185] are not real generalizations. In this paper, by restricting the conditions of the control functions, we obtain a real generalization of the Banach contraction principle (BCP). At the end, we introduce a weakly JS-contractive condition generalizing the JS-contractive condition.


2020 ◽  
pp. 1-11
Author(s):  
Waleed M. Alfaqih ◽  
Based Ali ◽  
Mohammad Imdad ◽  
Salvatore Sessa

In this manuscript, we provide a new and novel generalization of the concept of fuzzy contractive mappings due to Gregori and Sapena [Fuzzy Sets and Systems 125 (2002) 245–252] in the setting of relational fuzzy metric spaces. Our findings possibly pave the way for another direction of relation-theoretic as well as fuzzy fixed point theory. We illustrate several examples to show the usefulness of our proven results. Moreover, we define cyclic fuzzy contractive mappings and utilize our main results to prove a fixed point result for such mappings. Finally, we deduce several results including fuzzy metric, order-theoretic and α-admissible results.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Monairah Alansari ◽  
Shehu Shagari Mohammed ◽  
Akbar Azam

In this paper, some concepts of F-metric spaces are used to study a few fuzzy fixed point theorems. Consequently, corresponding fixed point theorems of multivalued and single-valued mappings are discussed. Moreover, one of our obtained results is applied to establish some conditions for existence of solutions of fuzzy Cauchy problems. It is hoped that the established ideas in this work will awake new research directions in fuzzy fixed point theory and related hybrid models in the framework of F-metric spaces.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 273 ◽  
Author(s):  
Salvador Romaguera ◽  
Pedro Tirado

With the help of C-contractions having a fixed point, we obtain a characterization of complete fuzzy metric spaces, in the sense of Kramosil and Michalek, that extends the classical theorem of H. Hu (see “Am. Math. Month. 1967, 74, 436–437”) that a metric space is complete if and only if any Banach contraction on any of its closed subsets has a fixed point. We apply our main result to deduce that a well-known fixed point theorem due to D. Mihet (see “Fixed Point Theory 2005, 6, 71–78”) also allows us to characterize the fuzzy metric completeness.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3137-3146 ◽  
Author(s):  
Marija Cvetkovic

There are many results in the fixed point theory that were presented as generalizations of Banach theorem and other well-known fixed point theorems, but later proved equivalent to these results. In this article we prove that Perov?s existence result follows from Banach theorem by using renormization of normal cone and obtained metric. The observed estimations of approximate point given by Perov, could not be obtained from consequences of Banach theorem on metric spaces.


Author(s):  
Simona Dzitac ◽  
Horea Oros ◽  
Dan Deac ◽  
Sorin Nădăban

In this paper we have presented, firstly, an evolution of the concept of fuzzy normed linear spaces, different definitions, approaches as well as generalizations. A special section is dedicated to fuzzy Banach spaces. In the case of fuzzy normed linear spaces, researchers have been working, until now, with a definition of completeness inspired by M. Grabiec’s work in the context of fuzzy metric spaces. We propose another definition and we prove that it is much more adequate, inspired by the work of A.George and P. Veeramani. Finally, some important results in fuzzy fixed point theory were highlighted.


Sign in / Sign up

Export Citation Format

Share Document