clamping system
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 30)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 196
Author(s):  
Wani J. Morgan ◽  
Hsiao-Yeh Chu

Plastic injection molding has become one of the most widely used polymer processing methods due to its ability to viably produce large volumes of complex parts in a short time frame. Most of the plastic injection molding machines currently used in industry possess a toggle clamping mechanism that undergoes a repeated clamping and unclamping cycle during operation. This toggle must therefore be properly lubricated to avoid catastrophic failure and eventual machine downtime. To overcome this limitation, the industry currently relies on the experience of a skilled operator, paired with a fixed empirical value, to determine the timing for re-lubrication. This method often leads to the machine operator either wasting lubricant by over-lubricating the toggle, or damaging the toggle by failing to re-lubricate when needed. Herein, we explore the use of vibration analysis to perform real-time condition monitoring of the lubrication condition of the toggle clamping system. In this study, our novel structural response analysis out performed both traditional time domain and frequency domain analyses in isolating the vibrational signatures indicative of lubricant degradation. Additionally, this study confirms that the vibration generated during the unclamping period of the toggle, proved to contain more valuable information relevant to the instantaneous lubricant quality than provided by its corresponding clamping period.


2021 ◽  
Author(s):  
Julian Ferchow ◽  
Marvin Bühler ◽  
Marcel Schlüssel ◽  
Livia Zumofen ◽  
Christoph Klahn ◽  
...  

Abstract Automated clamping for post-processing of mass-customized parts is a challenging step in the laser powder bed fusion (LPBF) process chain. In this study, a novel modular sheet metal clamping system was developed that uses disposable sheet metal profiles as a universal interface for the LPBF, robotic handling, and milling processes. Based on a fundamental investigation of hybrid additive manufacturing, the sheet metal clamping system was designed to use the same interface for the LPBF and milling processes. Subsequent an end-to-end validation was performed for the entire process chain. The concept of the sheet metal clamping system gives milling tools access to a part on five to six sides. Further, the part can be accessed from the top and bottom sides, and simplifying the removal of LPBF supports. No clamping forces are induced in the LPBF part, which is especially important for filigree structures. The sheet metal clamping system’s underlying concept could be adapted to automating the LPBF process chain for applications such as prosthetic dentistry.


2021 ◽  
Author(s):  
Muhammad Jawad Afzal ◽  
Asif Israr ◽  
Muhammad Soban Akram ◽  
Abdul Muqeet

Abstract For rapid prototyping, design validation and small batch productions process with low tooling cost is preferred. Single Point Incremental Forming (SPIF) is a die-less sheet metal forming process which requires only low cost forming tool driven by CNC machine in a toolpath to form required geometry at room temperature from sheet blank clamped in a low cost and low stiffness clamping system. In this study, effect of process parameters such as tool radius, feed rate and lubrication are considered on the formability of the truncated profile of AISI 321 Variable Wall Geometry (VWA). Set parameters conditions with 2 level layers are optimized using numerical and statistical approach. Experimentation on the same setup is carried out by selecting the most, least and mid favorable solutions optimized on the basis of forming forces and stresses in the sheet. Geometrical accuracy, sheet thinning, and forming forces are compared analytically, numerically and experimentally addressing the inadequacy of analytically models for Variable Wall Angle Geometries.


Author(s):  
Parthiban Kannan ◽  
Ragul Ramanathan

<p>The heart of the machining center design is the spindle design, and one of the primary functions in the spindle design is a tool clamping system mechanism. The selection of disc spring stack for a tool clamping mechanism is an iterative process that highly depends on the spindle space availability, drawbar design, tool unclamp stroke length, and standard clamping force requirements. For example, even a design space of 0.1 mm may impact one kN clamping force depending on the disc spring stack design. Hence the design of the tool clamping system for a spindle is a time- intensive process and also needed careful attention. The iterative process of disc spring stack selection may lead to an unoptimized tool clamping system, which may not be the best design. This paper explains a dynamic way to find the best spring stack selection to optimize the spindle tool clamping mechanism based on the computational application.</p>


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 492
Author(s):  
Enrique Soriano-Heras ◽  
Higinio Rubio ◽  
Alejandro Bustos ◽  
Cristina Castejon

Chuck holders are widely used for jobs with high precision. A chuck holder consists of a nut with a tapered surface and a thin-slotted clamping sleeve typically made of hardened steel and named a collet. Chuck holders are, essentially, wedge mechanisms. In this paper, we investigated the reactions and strains due to the forces during the chip removal process in the contact elements or jaws of the collet by means of mathematical analysis. Deflections in the jaws of the collet arise with a high influence from the precision of the workpieces. The cutting or process forces cause an axial force, a radial force, a torsional moment, and a bending moment on the chuck collet, and, consequently, displacements and inclinations of the clamping system are caused. Therefore, the proposed analytical models are based on elasticity and contact theories. The mathematical model for determining the deflections of the clamping system force was developed and implemented using MATLAB. The results showed that the variation in the clamping force during rotation in a collet chuck holder mainly depends on the stiffness of the collet chuck holder and the stiffness of the workpiece. The results indicated that the collet should be vulcanized to minimize the deformations that affect the final product. The deflections of a collet chuck holder due to process forces depend strongly on the clearances, wedge angle, and stiffness of the collet.


Procedia CIRP ◽  
2021 ◽  
Vol 96 ◽  
pp. 359-364
Author(s):  
Berend Denkena ◽  
Benjamin Bergmann ◽  
Johann Kiesner ◽  
Henning Buhl

Author(s):  
Georgy Georgiyevich Klasner ◽  
Vladislav Frantishekovich Kremianskiy ◽  
Andrey Andreevich Klinovitsky
Keyword(s):  

Author(s):  
Georgy Georgiyevich Klasner ◽  
Vladislav Frantishekovich Kremianskiy ◽  
Andrey Andreevich Klinovitsky
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document