edge sampling
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 23)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhijun Wang

Since the artistry of the work cannot be accurately described, the identification of reproducible plagiarism is more difficult. The identification of reproducible plagiarism of digital image works requires in-depth research on the artistry of artistic works. In this paper, a remote judgment method for plagiarism of painting image style based on wireless network multitask learning is proposed. According to this new method, the uncertainty of painting image samples is removed based on multitask learning algorithm edge sampling. The deep-level details of the painting image are extracted through the multitask classification kernel function, and most of the pixels in the image are eliminated. When the clustering density is greater than the judgment threshold, it can be considered that the two images have spatial consistency. It can also be judged based on this that the two images are similar, that is, there is plagiarism in the painting. The experimental results show that the discrimination rate is always close to 100%, the misjudgment rate of plagiarism of painting images has been reduced, and the various indicators in the discrimination process are the lowest, which fully shows that a very satisfactory discrimination result can be obtained.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jingming Hu ◽  
Tuan Tran Chu ◽  
Seok-Hee Hong ◽  
Jialu Chen ◽  
Amyra Meidiana ◽  
...  

AbstractGraph sampling methods have been used to reduce the size and complexity of big complex networks for graph mining and visualization. However, existing graph sampling methods often fail to preserve the connectivity and important structures of the original graph. This paper introduces a new divide and conquer approach to spectral graph sampling based on graph connectivity, called the BC Tree (i.e., decomposition of a connected graph into biconnected components) and spectral sparsification. Specifically, we present two methods, spectral vertex sampling $$BC\_SV$$ B C _ S V and spectral edge sampling $$BC\_SS$$ B C _ S S by computing effective resistance values of vertices and edges for each connected component. Furthermore, we present $$DBC\_SS$$ D B C _ S S and $$DBC\_GD$$ D B C _ G D , graph connectivity-based distributed algorithms for spectral sparsification and graph drawing respectively, aiming to further improve the runtime efficiency of spectral sparsification and graph drawing by integrating connectivity-based graph decomposition and distributed computing. Experimental results demonstrate that $$BC\_SV$$ B C _ S V and $$BC\_SS$$ B C _ S S are significantly faster than previous spectral graph sampling methods while preserving the same sampling quality. $$DBC\_SS$$ D B C _ S S and $$DBC\_GD$$ D B C _ G D obtain further significant runtime improvement over sequential approaches, and $$DBC\_GD$$ D B C _ G D further achieves significant improvements in quality metrics over sequential graph drawing layouts.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chuanyuan Zhou ◽  
Zhenyu Liu ◽  
Chan Qiu ◽  
Jianrong Tan

Purpose The conventional statistical method of three-dimensional tolerance analysis requires numerous pseudo-random numbers and consumes enormous computations to increase the calculation accuracy, such as the Monte Carlo simulation. The purpose of this paper is to propose a novel method to overcome the problems. Design/methodology/approach With the combination of the quasi-Monte Carlo method and the unified Jacobian-torsor model, this paper proposes a three-dimensional tolerance analysis method based on edge sampling. By setting reasonable evaluation criteria, the sequence numbers representing relatively smaller deviations are excluded and the remaining numbers are selected and kept which represent deviations approximate to and still comply with the tolerance requirements. Findings The case study illustrates the effectiveness and superiority of the proposed method in that it can reduce the sample size, diminish the computations, predict wider tolerance ranges and improve the accuracy of three-dimensional tolerance of precision assembly simultaneously. Research limitations/implications The proposed method may be applied only when the dimensional and geometric tolerances are interpreted in the three-dimensional tolerance representation model. Practical implications The proposed tolerance analysis method can evaluate the impact of manufacturing errors on the product structure quantitatively and provide a theoretical basis for structural design, process planning and manufacture inspection. Originality/value The paper is original in proposing edge sampling as a sampling strategy to generating deviation numbers in tolerance analysis.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-31
Author(s):  
Simiao Jiao ◽  
Zihui Xue ◽  
Xiaowei Chen ◽  
Yuedong Xu

Graphlets are induced subgraph patterns that are crucial to the understanding of the structure and function of a large network. A lot of effort has been devoted to calculating graphlet statistics where random walk-based approaches are commonly used to access restricted graphs through the available application programming interfaces (APIs). However, most of them merely consider individual networks while overlooking the strong coupling between different networks. In this article, we estimate the graphlet concentration in multiplex networks with real-world applications. An inter-layer edge connects two nodes in different layers if they actually belong to the same node. The access to a multiplex network is restrictive in the sense that the upper layer allows random walk sampling, whereas the nodes of lower layers can be accessed only through the inter-layer edges and only support random node or edge sampling. To cope with this new challenge, we define a suit of two-layer graphlets and propose novel random walk sampling algorithms to estimate the proportion of all the three-node graphlets. An analytical bound on the sampling steps is proved to guarantee the convergence of our unbiased estimator. We further generalize our algorithm to explore the tradeoff between the estimated accuracy of different graphlets when the sample budget is split into different layers. Experimental evaluation on real-world and synthetic multiplex networks demonstrates the accuracy and high efficiency of our unbiased estimators.


Author(s):  
Jean R. Ponciano ◽  
Claudio D. G. Linhares ◽  
Luis E. C. Rocha ◽  
Elaine R. Faria ◽  
Bruno A. N. Travençolo

2020 ◽  
Vol 14 (4) ◽  
pp. 653-667
Author(s):  
Laxman Dhulipala ◽  
Changwan Hong ◽  
Julian Shun

Connected components is a fundamental kernel in graph applications. The fastest existing multicore algorithms for solving graph connectivity are based on some form of edge sampling and/or linking and compressing trees. However, many combinations of these design choices have been left unexplored. In this paper, we design the ConnectIt framework, which provides different sampling strategies as well as various tree linking and compression schemes. ConnectIt enables us to obtain several hundred new variants of connectivity algorithms, most of which extend to computing spanning forest. In addition to static graphs, we also extend ConnectIt to support mixes of insertions and connectivity queries in the concurrent setting. We present an experimental evaluation of ConnectIt on a 72-core machine, which we believe is the most comprehensive evaluation of parallel connectivity algorithms to date. Compared to a collection of state-of-the-art static multicore algorithms, we obtain an average speedup of 12.4x (2.36x average speedup over the fastest existing implementation for each graph). Using ConnectIt, we are able to compute connectivity on the largest publicly-available graph (with over 3.5 billion vertices and 128 billion edges) in under 10 seconds using a 72-core machine, providing a 3.1x speedup over the fastest existing connectivity result for this graph, in any computational setting. For our incremental algorithms, we show that our algorithms can ingest graph updates at up to several billion edges per second. To guide the user in selecting the best variants in ConnectIt for different situations, we provide a detailed analysis of the different strategies. Finally, we show how the techniques in ConnectIt can be used to speed up two important graph applications: approximate minimum spanning forest and SCAN clustering.


Author(s):  
Shyjo Johnson ◽  
T. Jeyapoovan ◽  
D. Nagarajan

Recently, many literature studies have focused on the development on new elements in finite elements. This paper aims to develop a new quadrature for the 3-node triangular element for the purpose of evaluation of element stiffness matrix. The analysis of triangular element is usually done in a quadrilateral element by dividing the quadrilateral element into two. The edge sampling point quadrature is a mimics of Gauss numerical integration scheme. This sampling integration scheme consists of five sampling points and weights where four sampling points are at the edge and one at the center of the element. Accuracy of results, convergence of the results and stability of values have been tested using the standard benchmarked problems defined by various research studies.


Biometrika ◽  
2020 ◽  
Vol 107 (2) ◽  
pp. 285-287 ◽  
Author(s):  
J Lei ◽  
K Z Lin

Sign in / Sign up

Export Citation Format

Share Document