scholarly journals Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1309
Author(s):  
Jerzy Lukierski

We construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed D=4 quantum inhomogeneous conformal Hopf algebras Uθ(su(2,2)⋉T4) and Uθ¯(su(2,2)⋉T¯4), where T4 describes complex twistor coordinates and T¯4 the conjugated dual twistor momenta. The palatial twistors are suitably chosen as the quantum-covariant modules (NC representations) of the introduced Born-dual Hopf algebras. Subsequently, we introduce the quantum deformations of D=4 Heisenberg-conformal algebra (HCA) su(2,2)⋉Hℏ4,4 (Hℏ4,4=T¯4⋉ℏT4 is the Heisenberg algebra of twistorial oscillators) providing in twistorial framework the basic covariant quantum elementary system. The class of algebras describing deformation of HCA with dimensionfull deformation parameter, linked with Planck length λp, is called the twistorial DSR (TDSR) algebra, following the terminology of DSR algebra in space-time framework. We describe the examples of TDSR algebra linked with Palatial twistors which are introduced by the Drinfeld twist and the quantization map in Hℏ4,4. We also introduce generalized quantum twistorial phase space by considering the Heisenberg double of Hopf algebra Uθ(su(2,2)⋉T4).

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1055
Author(s):  
Stjepan Meljanac ◽  
Anna Pachoł

A Snyder model generated by the noncommutative coordinates and Lorentz generators closes a Lie algebra. The application of the Heisenberg double construction is investigated for the Snyder coordinates and momenta generators. This leads to the phase space of the Snyder model. Further, the extended Snyder algebra is constructed by using the Lorentz algebra, in one dimension higher. The dual pair of extended Snyder algebra and extended Snyder group is then formulated. Two Heisenberg doubles are considered, one with the conjugate tensorial momenta and another with the Lorentz matrices. Explicit formulae for all Heisenberg doubles are given.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Kourosh Nozari ◽  
F. Moafi ◽  
F. Rezaee Balef

We consider a real scalar field and a Majorana fermion field to construct a supersymmetric quantum theory of free fermion fields based on the deformed Heisenberg algebra[x,p] = iℏ(1−βp+2β2p2), whereβis a deformation parameter. We present a deformed supersymmetric algebra in the presence of minimal length and maximal momentum.


2016 ◽  
Vol 31 (19) ◽  
pp. 1630025 ◽  
Author(s):  
Laure Gouba

Four formulations of quantum mechanics on noncommutative Moyal phase spaces are reviewed. These are the canonical, path-integral, Weyl–Wigner and systematic formulations. Although all these formulations represent quantum mechanics on a phase space with the same deformed Heisenberg algebra, there are mathematical and conceptual differences which we discuss.


2016 ◽  
Vol 15 (04) ◽  
pp. 1650059 ◽  
Author(s):  
Daowei Lu ◽  
Shuanhong Wang

Let ([Formula: see text], [Formula: see text]) be a finite-dimensional Hom-Hopf algebra. In this paper we mainly construct the Drinfel’d double [Formula: see text] in the setting of Hom-Hopf algebras by two ways, one of which generalizes Majid’s bicrossproduct for Hopf algebras (see [S. Majid, Foundations of Quantum Group Theory (Cambridge University Press, 1995)]) and another one is to introduce the notion of dual pairs of Hom-Hopf algebras. Then we study the relation between the Drinfel’d double [Formula: see text] and Heisenberg double [Formula: see text], generalizing the main result in [J. H. Lu, On the Drinfel’d double and the Heisenberg double of a Hopf algebra, Duke Math. J. 74 (1994) 763–776]. The examples given in the paper are especially, not obtained from the usual Hopf algebras.


1993 ◽  
Vol 08 (01) ◽  
pp. 89-96 ◽  
Author(s):  
MARCELO R. UBRIACO

Based on a deformation of the quantum mechanical phase space we study q-deformations of quantum mechanics for qk=1 and 0<q<1. After defining a q-analog of the scalar product on the function space we discuss and compare the time evolution of operators in both cases. A formulation of quantum mechanics for qk=1 is given and the dynamics for the free Hamiltonian is studied. For 0<q<1 we develop a deformation of quantum mechanics and the cases of the free Hamiltonian and the one with a x2-potential are solved in terms of basic hypergeometric functions.


2005 ◽  
Vol 20 (37) ◽  
pp. 2861-2871 ◽  
Author(s):  
JAMILA DOUARI

We study the exotic particles symmetry in the background of noncommutative two-dimensional phase-space leading to realize in physics the deformed version of Cλ-extended Heisenberg algebra and ω∞ symmetry.


2012 ◽  
Vol 27 (21) ◽  
pp. 1250114 ◽  
Author(s):  
A. M. GAVRILIK ◽  
I. I. KACHURIK

A three-parametric two-sided deformation of Heisenberg algebra (HA), with p, q-deformed commutator in the L.H.S. of basic defining relation and certain deformation of its R.H.S., is introduced and studied. The third deformation parameter μ appears in an extra term in the R.H.S. as pre-factor of Hamiltonian. For this deformation of HA we find novel properties. Namely, we prove it is possible to realize this (p, q, μ)-deformed HA by means of some deformed oscillator algebra. Also, we find the unusual property that the deforming factor μ in the considered deformed HA inevitably depends explicitly on particle number operator N. Such a novel N-dependence is special for the two-sided deformation of HA treated jointly with its deformed oscillator realizations.


2003 ◽  
Vol 12 (02) ◽  
pp. 299-315 ◽  
Author(s):  
J. KOWALSKI-GLIKMAN ◽  
S. NOWAK

Doubly Special Relativity (DSR) theory is a recently proposed theory with two observer-independent scales (of velocity and mass), which is to describe a kinematic structure underlining the theory of Quantum Gravity. We observe that there are infinitely many DSR constructions of the energy–momentum sector, each of whose can be promoted to the κ-Poincaré quantum (Hopf) algebra. Then we use the co-product of this algebra and the Heisenberg double construction of κ-deformed phase space in order to derive the non-commutative space–time structure and the description of the whole of DSR phase space. Next we show that contrary to the ambiguous structure of the energy momentum sector, the space–time of the DSR theory is unique and related to the theory with non-commutative space–time proposed long ago by Snyder. This theory provides non-commutative version of Minkowski space–time enjoying ordinary Lorentz symmetry. It turns out that when one builds a natural phase space on this space–time, its intrinsic length parameter ℓ becomes observer-independent.


Author(s):  
F.A. Dossa ◽  
J.T. Koumagnon ◽  
J.V. Hounguevou ◽  
G.Y.H. Avossevou

The deformed Landau problem under a electromagnetic field is studied, where the Heisenberg algebra is constructed in detail in non-commutative phase space in the presence of a minimal length. We show that, in the presence of a minimal length, the momentum space is more practical to solve any problem of eigenvalues. From the Nikiforov-Uvarov method, the energy eigenvalues are obtained and the corresponding wave functions are expressed in terms of hypergeometric functions. The fortuitous degeneration observed in the spectrum shows that the formulation of the minimal length complements that of the non-commutative phase space. Изучается деформированная задача Ландау в электромагнитном поле, в которой алгебра Гейзенберга подробно строится в некоммутативном фазовом пространстве при наличии минимальной длины. Мы показываем, что при наличии минимальной длины импульсное пространство более практично для решения любой проблемы собственных значений. С помощью метода Никифорова-Уварова получаются собственные значения энергии, а соответствующие волновые функции выражаются через гипергеометрические функции. Случайное вырождение, наблюдаемое в спектре, показывает, что формулировка минимальной длины дополняет формулировку некоммутативного фазового пространства.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1810
Author(s):  
Piotr Kosiński ◽  
Paweł Maślanka

The relativistic (Poincaré and conformal) symmetries of classical elementary systems are briefly discussed and reviewed. The main framework is provided by the Hamiltonian formalism for dynamical systems exhibiting symmetry described by a given Lie group. The construction of phase space and canonical variables is given using the tools from the coadjoint orbits method. It is indicated how the “exotic” Lorentz transformation properties for particle coordinates can be derived; they are shown to be the natural consequence of the formalism.


Sign in / Sign up

Export Citation Format

Share Document